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Introduction®

This collection of technical papers represents an expansion of ideas presented at the
conference "Technology Assessment: Estimating the Future” held at UCLA on
September 5 and 6, 1990. The goal for the conference was to identify the major strategies and
most promising practices for assessing technology. The papers present perspectives from
computer science, cognitive and military psychology, and education. The authors, representing
government, business, and university sectors, help to set the boundaries of present technology
assessment practices.

The papers are organized into three groups: Models and Syntheses, Assessment of
Software Strategies, and Examples of Training and Assessment Technologies. The groups reflect
the specific emphases and research interests of the authors within the broad area of technology

assessment.

*We are currently exploring publication of this collection with a commercial publisher and would
thus like to forestall widespread distribution at this time.
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AN ECOLOGICAL APPROACH FOR INFORMATION TECHNOLOGY
INTERVENTION, EVALUATION AND SOFTWARE ADOPTION POLICIES

. This chapter reviews an approach that guided a five year
(1985\86 - 1988\89) research oriented Information Technology [IT]
innovation (Project Comptown) that extensively computerized schools
and their "close environments" in two localities in Israel (Peled,
Peled & Alexander, 1988, 1989). The intervention, evaluation and
resulting software adoption policies all evolved from a single
conceptual formulation that we call "ecological" (Gibbs,1979). This
formulation treats the constituents of large scale interventions and
evaluations and combines their multisystemic and treatment-specific
components into a model of educational change.

The chapter is divided into three parts. The first part presents
the ecological formulation, and briefly describes the Comptown
project. The second part elaborates principles, considerations and
procedures that are central for evaluating: (a) ecological change
processes and (b) treatment-specific experimentation. The third part
discusses IT software adoption policy implied by the ecological

approach.

The Multisystemic Ecological Formulation
The leading concept in this chapter is presented by a

multisystemic ecological formulation based on Bronfenbrenner's theory
of nested ecological frameworks (Bronfenbrenner, 1977, 1979) and on
ecological notions of educational theories (e.g. Goodlad, 1979; Guba,
& Lincoln, 1988; Salomon, 1990; Sarason, 1982). This formulation

perceives the ecology of the classroom as a concentric arrangement of




four nested systems that act and interact. The innermost and core
construct of this arrangement is the classroom, containing learners
and teachers. This system consists of three open-ended functional
settings (physical, activity, content) in which instruction and
learning occur. Next is the school, containing the school
administrative staff. This system is the primary operational unit in
which resources and policies are transformed into the classroom
settings. The third ring comprises the community's political,
administrative, business and social systems, containing the
community's key personalities as well as the learners' parents. All
three systems express needs and expectations, ané exercise pressures
that may directly affect (advance or disrupt) learningland
instruction.

Finally the outer ring includes educational policy making
institutions containing elected and appointed officials at the
regional and national levels. Through laws, administrative
regulations and resource allocation this outer ring, markedly
separated from the school and the classroom, may generate new sources
of stimulation that either enhance or discourage new developments in
the immediate educational system. Figure 1 schematically maps these
ecological arrangements.

(Insexrt Figure 1 Here)

The mapped arrangements are not merely structural. Their mapping
is based on five assumptions:

1. Each system consists of implicit cultural, and explicit

functional-instrumental components.




2. All the ecological systems are interrelated by a common
"cultural blueprint" that sets the pattern for the structures
and processes that occur within and across the systems.

3. Classrooms, schools, and social political institutions are
culturally dependent systems. To a large extent, their
properties and activities are dominated by cultural
traditions, and their cultural messages affect behaviors, and
have ripple effects in related systems.

4. Ordinarily Cultural functioning is implicit. Its
reproduced patterns and processes remain unnoticed. Their
effect becomes explicit, and their critical evaluation become
possible, only through interventions that introduce enduring
innovations into the ongoing activities of the existing
systems.

5. Enduring educational innovations are generated and carried
on by two types of parallel and mutually stimulating change
processes: cultural-ecological and treatment-specific.
Cultural ecological processes result from combinations of
acting and interacting factors, within and across the
ecologically interconnected systems. Treatment-specific
(mostly cognitive) processes result from particular
treatments that are applied within the ecologically specified
educational settings. IT interventions and IT policy
decisions must therefore equally aim at the individual
participants, the school and classroom, and their expanded
ecological environment.

Project Comptown empirically implemented this formulation.




Project Comptown: An Ecologiggllz Oriented IT Intexventijon

Comptown was designed to create an ecology in which the
correspondence between cultural-ecological and individual changes
could be identified, one in which the interplay between individual
activities and environmental opportunities and constraints (Gallimore,
1990) could be better understood and exploited. The prcject was
therefore carried out in two localities that differed greatly in their
demographic, administrative and political characteristics, in their
educational agendas, and in their approach to educational issues. (see
Table 1).

(Insert Table 1 About Here)

In locality "A" the entire educational system participated in the
project. In the second locality (locality "B") only part of the
educational system participated. Table 2 provides a summary
description of the educational system and the scope of the
intervention in each site.

(Insert Table 2 About Here)

The demographic factors, the political and administrative
systems, along with other "situational" factors (that emerged
throughout the intervention), created contrastable ecological
environments in which the project's premises, goals and operational
principles were implemented and its posited educational change

expectations could be explored and evaluated.




Comptown's Premises, Goals, Operational Principle and Change
Perspectives

The project built on three universally applicable and
ecologically oriented premises: First, in the "Information Era" the
computer is. a "major cultural tool" (e.g. Calfee, 1985; Olson, 1985;
Pépezt, 1987; Salomon, 1990; Shavelson & Salomon, 1985) that "defines
and redefines man‘'s role in relation to nature" (Bolter, 1984, pp.13).
Realizing IT potential in schools augments the educational environment
and narrows the gap between the "school culture" (Sarason, 1982) and
the "real world culture".

Second, "sound" educational usages of IT (Winkler, Shavelson,
Stasz, Robyn & Feibl, 1985), provide opportunities to generate
educational innovations and activate unrealized learning and teaching
potentials.

Third, collaborative politicians, community leaders and
parents create a "supportive ecology" in which "IT culture" (directly
or indirectly affecting schools) can germinate.

Following its premises the project's intervention goals were
to:

1. Create a computer culture in schools.

2. Utilize the computer's potential for innovative
teaching and learning both in and outside
school. '

3. Create a supportive ecology in which a "computer
culture" can expand.

The operational principles (see Appendix 1) complementarily

implemented the three goals in each Comptown site. Two of the seven




operational principles -- cultivatiop of supportive attitudes,
mobilization of involvement -- embhasized goal "3", aiming at the
entire ecology; three of the operational principles -- high density
allocation of computers, varied and open computer application, and a
system approachv—— emphasized goal "1", aiming at the school and its
classrooms. Two additional principles -- use of IT-based and non-IT-
based instructional strategies in a mindful manner -- emphasized goal
"2" and targeted at individual participants.

Comptown introduced these acts to dramatically change the nature
of the traditional "Print and Book" dominated classroom. It assumed .
that the long term intervention would have three additional
educational (cognitive) conseguences: First, repeated choices
mindfully carried on, such as weighing the "benefits" and fcosts" of
IT and traditional alternatives, will enhance teachers' and learners'
awareness of two sets of rela;ions: those prevailing in the "old"
setting and its underlying culture, and those prevailing in the
"innovative" setting and its underlying culture. Second, these
cultural insights will enable learners and teachers: (a) to test their
"0ld" and "new" learning environments by comparison ; and (b)
mindfully change their course of learning and teaching as they
progressively augment their higher-order thinking skills (Salomon,
1985, 1990; Salomon & Perkins, 1987; Salomon, Perkins & Globerson, in
press). Third, understanding the links between IT and older strategies
may cultivate two properties that are critical to educational change:
(a) an intuitive understanding of the unique contributions of
alternative learning environments to the ongoing "cumulative learning

process", and (b) the use of multiple perspectives in a learned task.




The implementation of the ecological model in a complex
ecological environment followed a multilevel-multisystemic design
(described in Peled, Peled & Alexander, 1989; Project Comptown:
Intermediate Reports, 1985 - 1987, 1985 - 1989; Project Comptown: IT
Treatment Studies, 1987 -1989) that: (a) distinquished preparatory,
implementation and adoption of the innovation conditions and
functions; and (b) used specified intervention strategies in the
classroom and in the nesting systems.

The evaluation of the project showed that unlike the claim
often made in "experimental" (e.g. Becker, 1987, 1988; Clark, 1983a,
1983b, 1985a, 1985b; Pea, 1987; Walker, 1987) or "cultural" (e.g.
Papert, 1987; Salomon, 1990a, Salomon, 1990b; Scarr, 1985) research
literature, processes and outcomes that were demonstrated in IT
classrooms were neither specific nor holistic. They rather resulted
from two types of interrelated developments: (a) continuous (often
long term) and complex ecological developments that were contingent on

the specific nesting arrangements of the intervention, and (b)

treatment (often short term) generated processes that were realized
through interactions between learners and particular IT devices
(applied within an ecologically specified framework). The assumptions
and concerns that guided this evaluation were not specific to
Comptown. They were conceptually rooted in the general ecological

formulation.

Major Concerns of an Ecologically Orjented Evaluation

In the ecological formulation the basic structure components are

dynamic classroom settings that are conditioned on nested systems. The




basic process components are intersystemic and intrasystemic
interactions that create and carry on the cultural-ecological and
treatment-specific innovations. An evaluation that is guided by these
conditioning assumptions is consequently concerned with three issues
that are ordinarily bypassed by conventional "input-output”
evaluations and are central to the ecological evaluation:

The first issue involves the identification and study of parallel
and mutually stimulating cultural-ecological processes that are
contingent on the intervention. These processes often act in complex
and cyclical ways. Accordingly the evaluation is concerned with: (a)
combinations of dynamic factors that contribute to particular results,
whereas the relations among these factors and the unique effect of
each single factor remain unknown, and (b) developments that need to
be studied in cyclical ways, so that new knowledge gained leads to new
hypotheses that refer to new and previously unanticipated combinations
of factors that both affect and are affected by the intervention.

The second issue is the design of multiple ecological contrasts
in which different combinations of structure and process constituents
that are not given to experimentation, can be studied and evaluated.
This design implies the construction of basic data structures that:
(a) formally define the building blocks (facets) of contrasted
ecologies, and (b) translate these specifications into reproducible
observations.

The third concern of an ecological evaluation is the
understanding of the effects of specific treatments that are
compatible with the ecological model and are part of the intervention.

These understandings which are essential for further intervention




manipulations imply the design of an ecologically sensitive
experimentation that is theory driven and that rules out
counterinterpretations within the well specified ecology.

The following examples from Comptown elaborate these concerns.

Ecological Change Processes: The Comptown Example

In Comptown ecological processes that were repeatedly activated
by interactions in each and all ecological systems were realized
through interconnected classroom accommodations, school modifications,
centralized policies, and beliefs - and attitude - based behaviors.
Tables 3, 4, 5 and 6 examine some of the indicative developments in
the first three years of the intervention (1985-1988). Each of the
four tables focuses on "pre-project" and "“project-triggered"
characteristics that realize one of the four ecological change
processes involved in the innovation.

Table 3 focuses on accommodations (physical, activity and
subject-matter content) observed in classroom "6" (school "Y",
locality "A"). The developments in this classroom (managed by the same
teacher, in the same school and same locality) accurately represent
the changing trends in classrooms that actively and continuously tried
to implement the project's goals.

(Insert Table 3 Here)

Furthermore, the analysis of the accommodations showed that: (a)
the contrasted characteristics realized inseparable aspects of
interrelated classroom events; (b) the emerging patterns could neither
be understood nor valued in terms of isolated classroom settings, and

(c) the observed accommodations were nested: i.e. additional




ecological processes that converged in the classroom were differently
realized in the "1985" and the "1988" situations.

Table 4 demonstrates some of the school's modifications that
framed the classroom's "move" from one educational orientation
(frontal teachiné) to the other (interactive group work).

{Insert table 4 Here)

The listed administrative, social, and curricular modifications
‘reveal a dynamic school policy that was fruitful both inside and
outside the school. Inside the school it reshaped some of the
prevailing principles, reinforced existing trends and nurtured
interactive relations between the school and its classrooms. Outside
the school it produced new ideas that activatgd local support systems
and influenced centralized policy making institutions. The policy
modifications of school "Y" and its generated internal and external
interactions were typical processes in locality "A". In this locality
involvement, support, and intervention actions progressively
increased, moving in the same direction. These interdependencies did
not develop in locality "B". Table 5 presents examples that
demonstrate the different intersystemic interactions in the two
Comptown sites (Comptown: Intermediate Reports 1986, 1988).

(Insert Table 5 About Here)

These examples show that the distinctive ecological arrangements
of localities "A"™ and "B" generated different ecological processes.
Furthermore, the examples that follow show that these processes
interacted differently with the fourth type of ecological change
processes: "belief - and attitude - based behaviors" (Jagodzinski &

Clarke, 1986).
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In Comptown "belief - and attitude - based behaviors" operated
across the ecological levels in two ways. First, at the introduction
of the innovation, they provided a bridge between the intervention and
its unknown results (Schank & Abelson, 1977). Second, as the
intervention evolved they tested the initial promises of the
intervention against its particular outcomes. Table 6 describes
"belief - and - attitude - based behaviors" in the two Comptown sites.

(Insert Table 6 About Here)

Although contradictory in their consequences, "belief - and -
attitude - based behaviors played identical roles in the two
localities. They aimed at the project's promises and cultivated
"theoretical" expectations that were not based on already existing
experience. In locality "A", realized expectations augmented positive
attitudes toward the project. In locality "B", the real events
contradicted expectations, nurtured critical attitude based behaviors,
and augmented the negative approach toward the project.

Taken together, the examples presented above reveal: (a)
systematic relations between an implicit "community culture" and
explicit school and classroom characteristics, and (b) cyclical
progressions of dynamic multisystemic ecologies that cannot be
modelled by conventional hypotheses testing paradigms

The evaluation of Comptown could not decide, nor could it
experimentally find out, whether the radically different project
histories reviewed in this chapter resulted from different political
and social constellations, different physical settings, different
school cultures, different attitude based behaviors, or a combination

of each and all of these factors. This experience implies that the




evaluation of complex ecological arrangements should build upon a
paradigm that models multisystemic linear and non linear functioning
and that emphasizes: (a) an explorative, hypotheses generating
approach that contrasts ecologies (rather than an hypothesis testing
approach that builds upon randomized experiments) and (b) a data
structure that formally and empirically characterizes variations

within the contrasted ecologies.

Formalization of Basic Ecological Data Structures P

The nested systems formulation assumes that classroom occurrences
reflect, and permit the tracing of developments across the ecological
levels. In ecological evaluations the formal specification of basic ®
data structures is based on this assumption.

Furthermore, the proposed ecological paradigm treats within
Guttman's facet theory (Canter, 1985; Guttman, 1957; Shye, 1978) ®
structure and process components that: (a) represent the classroom and
delimit its ecology, and (b) translate ecological variations into
reproducible observations that can be used in a contrast based ®
evaluation.

To achieve this type of data representation a two stage design is
required. The first stage involves the specification of three ®
structure and four process components that are essential and necessary
for the design of the ecological evaluation. The second stage
elaborates specific properties and processes that characterize each ®
specific phase of the intervention.

The structure components that are essential in a first stage

design are the three classroom settings, often discussed in ecological o

o o
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and educational literature. These settings are: "Physical" (e.q.
Bronfenbrenner, 1977, 1979; Calfee and Brown, 1979; Project Comptown,

1988, 1989, 1990); "Activity" (e.g. Doyle, 1986; Lamm, 1976; Leontiev,

1964; Project Comptown, 1988, 1989, 1990; Vygotsky, 1978), and
"Content" (e.g..Doyle, 1988; Lamm, 1976; Project Comptown, 1988, 1989,
1990; Shavelson, Winkler, Stasz, Robyn & Shaha, 1984).

The process components that are essential in a first stage design
are four facets that enable characterization and contrast of the
-"newly introduced" cultural—éducational frames, and the pre-project
"0ld" frames. These process facets are: (a) the inventory of the items
that distinguish the setting; (b) the organization of the items within
the setting; (c) the intrasystemic accommodations that involve the
setting, and (d) the intersystemic relations that affect the settings.

Since any situation or event in the classroom can be
characterized as a particular combination of these settings and
facets, all three settings and four facets are considered essential
and necessary for the design of the evaluation. Table 7 presents
preliminary, first stage, specifications for the construction of
reproducible ecological observations.

(Insert Table 7 Here)

Tables 3, 4, 5 and 6 can be taken as typical observations that
built upon these specifications. The presented examples were derived
from Comptown's longitudinal exploration of multiple ecologies that
contrasted: same classroom within the same school, different
classrooms within the same school; classrooms in different schools

within the same locality; different schools within the same locality,

]




and schools in different localities. Figure 2 schematically lays out
the ecological units of analysis used in this study.
(Insert Figure 2 Here)

The Comptown intervention was carried out in three phases: (a)
preparation, (b) implementation, (c) adoption of the innovation. Each
phase had different foci and different characteristics that first
stage design could not capture. The second stage design introduced
detailed refinements that clarified specific objectives and referent
systems and thereby operationalized first stage specifiéations.

The ecological paradigm developed in this section has four
distinguished characteristics:

1. Properties and processes that have no effect on classroom
occurrences, and that cannot be traced through properties and
processes in classroom settings, are omitted from the
evaluation design.

2. The units of analysis are the natural systems. Behaviors
that are included in the design are not separated from their
natural settings and can be studied as culturally and
ecologically dependent behaviors.

3. The settings and facets that guide the construction of the
observations remain intact across different ecological
arrangements.

4. The two stage design allows for additions, corrections,
deletions, and accommodations that conceptually elaborate and

empirically validale the ecological model.
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Ecologically Sensitive Experimentation

The ecological assumption implies that IT treatments cannot be
separated from their ecological contexts, or from the cultural
comparisons and educational activities they enhance. Accordingly IT
treatments should be defined in terms of (a) interactions between
learners in an ecologically characterized classroom, and a particular
type of educational software, and (b) fhe alternating media
representations introduced. The "ecologically sensitive
experimentation" that we propose elaborates this formulation in four
facets. These facets are: (a) "Type of Information Exchanged and
Processed" in the interaction (i.e. subject matter bound or procedural
and applicable to a variety of subject matters (Give‘on, 1988)); (b)
"Cognitive Demands Set on the Learner" (i.e., low-reactive or high-
level-interactive processing demands (Give‘on, 1988; Salomon, 1985;
Salomon & Globerson, 1987; Salomon & Perkins, 1987)); (c) "Proximity
between Processes" generated throughout the interaction and processes
that are encouraged by the already functioning educational frameworks
(i.e., processes producing "more of the same" and leaving the
learner*s "zone of proximal development" (Vygotsky, 1978; Wertsch,
1985%a, 1985b) intact, or processes that trigger an innovative
experience that augments the learner‘s "zone of proximal development"
(Project Comptown, 1990)); (d) "Exposure to Alternating
Representations" (i.e., use of software in a non selective or a
critical selective manner (Gal, 1990; Bamberger & Schon, 1983). Table
8 presents faceted design for the characterization of IT software used
in ecologically sensitive experimentations.

{Insert Table 8 About Here)




Since IT treatments are nested within natural ecological
settings, the generality and validity of the treatment cannot be
technically handled. They must be defended in two ways. First, the
treatment and the stimulated cognitive processes must be relevant to a
variety of learning and teaching contexts. Second the implementation
of the treatment and control conditions must be eguivalent and
representative in relation to similar learning and instruction
activities in regular classroom settings. A design that satisfies
these conditions, and tests the implications of a mindful use of a
particular type of software in natural classroom settings, is
presented in Table S.

(Insert Table 9 Here)

This design was repeatedly used in Comptown for the evaluation of
the cognitive benefits of a mindful use of types of software that
encourage the development of higher order cognitive skills and meet
the ecological criteria of generality and validityl. The "Algebraic
Linear Functions" and the "Data Base" studies are two examples. The
"Algebraic Linear Functions" study evaluated the relation between a
mindful use of "computer generated" simulations and the users' ability
to abstract the basic principles of these functions and apply these
principles to new types of algebraic functions. This study was carried
out over six months (teacher training included) with eighth and ninth
grade students and was concluded with three tests: a regular
achievement test that evaluated learners®' ability to apply familiar
algebraic principles to familiar problems; a "one step" inference test
that evaluated learners*® ability to apply familiar principles to new

and unfamiliar problems, and a "multiple inference" test that
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evaluated learners®' ability to use general abstractions for the
generation of new principles and to apply the newly generated
principles to new and unfamiliar problems. Interestingly, classrooms
that selectively and critically used computer simulations, coped bhest
with "multiple inference" problems.

The "Data Base" study evaluated the relation between the mindful
use of data-base software and the learners® ability to organize data,
identify meaningful variables, and formulate and test hypotheses. This
study was carried out over six months (teacher training included) with
sixth-grade students and was concluded with a "paper and pencil" test
that evaluated learners' ability to apply "data-base" inquiry
procedures to new information that is not studied in schools. The
results indicated that a mindful use of computer "Data-Base" software
might help to realize IQ potentials. The correlations between IQ and
"data-base" scores in the "treatment" classrooms were consistently and
significantly higher as compared to the same correlations in the
"control" classrooms.

Comptown's ecologically sensitive experimentation was carried out
in natural classroom settings that were "ecologically controlled".
Using methods that are ordinarily associated with quasi-experimental
studies (Campbell & Stanley, 1963), the ecologically sensitive
experimentation tested specific causal hypotheses that were theory
driven. However, this does not imply that the theories from which the
hypotheses were derived suggest that the highly complex multisystemic
ecological factors do not affect or are not affected by the
intervention. They rather emanated irom the need to know which aspects

of the complex classroom ecology deserve more attention. Comptown's




experimentation therefore carefully looked at the ways in which the
systemic conditions in the treatment classrooms differed from their
controls. Ore paramount characteristic was the congruence between the
generic properties of the instruments of learning and teaching and the
teacher's pattern of instruction. This finding motivated the
construction of a "Taxonomy for Information Technology Adoption
Policy" (Peled, Peled, & Alexander, to be published): an IT software

selection procedure that is implied by the ecological approach.
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A "Taxonomy for Information Technology Adoption Policy: An IT software
Selection Procedure Implied by the Ecological Approach

In the ecological model a pattern of instruction and the use of
instruments of instruction derive from a single conceptual framework
that to a large extent is culturally-ecologically dominated. An
intervention that introduces new instructional instruments may either
disrupt the "Instruction-Instrument" harmony and reveal the
multifaceted nature of these implicit, ordinarily "hidden"
connections, or lead to inadequate and fruitless use of the newly
introduced technologies. Recognizing the vital importance of
adequately matching teacher and instrument, Comptown's ecologically
sensitive experimentation introduced IT software while changing the
teacher's pattern of instruction. The "Taxonomy for Information
Technology Adoption Policy" tries to generalize the Comptown
experience and reveals the possible correspondences between the
generic properties of patterns of instruction and six types of IT
software ordinarily used in education (Drill & Practice, Tutorials,
Games, Simulation, Open Tools, Educational Programming).

More specifically, the "Taxonomy for Information Technology
Adoption Policy" consists of three components: one that characterizes
instructional processes which determine teachers' patterns of
instruction; one that specifies properties of software, and one that
defines the range of congruence between instructional processes and
software.

Instructional processes are further elaborated by five decision
making processes (facets) that delimit the diversity of patterns of

instruction. Software properties are further elaborated by five facets




that specify these properties in terms of their managerial and
instructional qualities (i.e., elements of these facets reinforce
elements of practiced patterns of instruction). Table 10a presents the
five instructional decision making facets and their elements.

(Insert Table 10a About Here)

Table 10b presents the five software facets and classifies
educational software accordingly.

(Insert Table 10 b About Here)

The "Linear Functions" and "Data Base" experiments are concrete
examples that demonstrate the benefits of congruence. In these
experiments congruent software properties augmented instructional
methods. We will use these studies as representative applications of
the more general framework delimited by the "Taxonomy".

The instructional goals emphasized by the linear function
"treatment" teachers (who internalized the project's operational
principles and were trained to use the simulation software mindfully)
were: (a) derivation of a set of abstract principles (Facet [A]:
clement 3) that permit each student to rediscover abstract sets of
relations and construct new functions (Facet [D]}: element 3) and (b)
development of computer skills that allow each student systematically
and mindfully manipulate computerized simulations (Facet [A]: elements
1, 2). The learning activities enhanced by these teachers were either
group directed or individualized and autonomous (Facet [C]: elements
2, 3). To this end the treatment - classroom teachers were constantly
engaged in curricular decisions (Facet [B]: element 2) that involved:
(a) mapping of elements of instructional patterns onto elements of the

simulation software and (b) selection and integration of computer-
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based activities into the on going instruction and learning
procedures.

The software's managerial properties enabled teachers to deliver
some "control" responsibilities (Facet [F]: element 2) to software
users and act as facilitators (Facet [E]: element 2). The software's
information processing properties reinforced the teachers® tendency to
enhance: (a) use of semi structured learning materials (Facet [I]:
element 2), (b) joint computer and user generation of information
(Facet [H]: element 2), and (c) discovery of software's algorithm
(Facet [J): element 2).

Similar developments took place in the "Data Base" study. The
"treatment" teachers emphasized the acquisition of computerized data
base strategies and higher order information handling skills (Facet
[Al: element 4). Responsibility for the design of the content, to a
large extent, devolved on software users (Facet [Bl: elements 2, 3).
Teachers facilitated (Facet [E): element 2) group directed (Facet [c]:
element 2) learning activities that were essential to new knowledge
construction operations (Facet [D]: elements 2, 3).

The "Dala Base" software information processing requirements
induced learners to supply information and use software's algorithm
for the construction of new knowledge (Facet [H]: element 3; Facet
[J]): element 3). These requirements intensified an already existing
pattern of instruction developed by teachers who had internalized
Comptown's operational principles. Hence, data construction procedures
could be practiced in an enriched educational environment.

Both experiments spell out congruence in terms of fluid

interdependencies between instructional patterns and instructional




properties of software and demonstrate pedagogical, psychological and
administrative implications of software selection and use.
Furthermore, the experiments prove that congruence rests on a dual
verification process: examination of the elements that characterize a
pattern of instruction and examination of the correspondence between a
pattern of instruction and generic software properties. Table 11 maps
elements of patterns of instruction on elements of software properties
and reveals optional software and instructional cross classifications
that may lead to educatioal change.

(Insert Table 11 About Here)

Concluding Remarks

This paper reviews an ecological formulation that applies equally
to information technology intervention, evaluation and software
adoption policies. The formulation is based on the assumptions that:
{(a) classrooms, schools, and social political institutions are
culturally dependent systems, (b) their cultural functioning,
ordinarily implicit, becomes explicit through interventions that
introduce innovations into the on-going activities of the existing
systems, and (c) enduring educational innovations are generated and
carried on by two types of parallel and mutually stimulating change
processes: cultural-ecological and treatment-specific processes.

Furthermore, the elaboration of this overarching formulation
leads to the complementarity of three paradigms: a paradigm that
models processes evolving from complex cultural-arrangements that
cannot be subjected to experimental manipulations: a paradigm that

models processes evolving from treatment manipulations in gquasi-
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experimental settings, and a paradigm that models decision making
considerations that are implied by the intervention and may yield
congruence or dissonance in the immediate educational environment.
These paradigms prescribe the use of fundamentally different
methods within the same intervention and same evaluation. The
cultural-ecological framework leads to the design of multilevel
systems intervention that requires longitudinal explorations of
multilevel systems with ever changing interdependencies (linear and
non linear). The treatment-specific intervention leads to the
introduction and manipulation of "external", independent variables.
The evaluation of these treatments imply quasi-experimental framework
that focus on causal relations with comparison of equivalent groups,
and analyses of sequehces of discrete events that offer predicted and
measurable results, in response to narrow questions. The congruence
framework combines cultural-ecologicl and quasi-experimental methods

that facilitate analyses of educational innovations in progress.

The facet definitions of the evaluation framework directly evolve

from a project's operational principles of the type under discussion
in this chapter. These definitions: (a) guide the design of
reproducible observations for the cultural-eclogical, treatment-
specific and congruence studies, and (b) generate the entire map of
multisystemic functioning that create the educational innovation.

The ecological approach has four additional characteristics:

1. It uses the same conceptual formulation for both the design,
and the evaluation of the intervention, eliminating inconsistencies

between intervention and evaluation.




2. It accords importance to ecological contexts and if necessary,
trades off internal for external validity.

3. It examines the assumption that multiple ecological contexts
and multiple educational treatments encourage the development of
higher order skills, while single-context educational environments are
less likely to do so.

4. It tries to maintain mutually stimulating and constructive
relationship between parallel hypotheses-generating and hypotheses-
testing operations.

Finally the ecological approach suggests five indicators that are
useful for the identification of ecological change processes important
for education.

1. Realization of parallel and mutually stimulating change
processes: cultural-ecological" and treatment specific.

2. Extensive and varied interactions with IT devices that are
mindfully integrated into the "Print and Book" dominated classrooms.

3. Use of multiple perspectives in learning and teaching

4. Awareness of the unique contributions of alternative and
alternating learning environments

5. Mindful developments of new and changing courses of learning
and teaching that result from repeated comparisons of the "Print and

Book" and the "IT" learning environments.
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NOTES

1. The design of each of the two experiments combined:

[a] A careful selection of an IT treatment that involved formal
thinking operations (Piaget & Inhelder, 1969), and was either
applicable to different levels of abstraction within a specific
content area (algebraic functions), or to a variety of subjcct
matters.

[b]l] An intervention strategy that allowed the research to use
reproducible methods in the characterization the manipulation of the
software throughout the different steps of the intervention.

[c] The definition and the prediction of measurable outcomes

[d] The use of control an treatment group with equivalent student
distributions, equivalent classroom settings, and equivalent nested

systems in variety of subject matters




Table 1: Demographic, Administrative & Political Characteristics
of the Two Comptown Sites

CHARACTERISTICS LOCALITY "aA" LOCALITY "B"
DEMOGRAPHIC
Population 13 000 54 000
Composition homogeneous mainly!heterogeneous

ADMINISTRATIVE & POLITICAL

Educational administration
Interest groups
Political pressure

Main educational issues

middle class

centralized
insignificant
insignificant

improvement &
innovations of
schools

decentzralized
pronounced
dominant

provision of quality
education to large
groups of advantaged
& disadvantaged
students

Table 2: A Summary Description of the Educational Systems and the

Scope_of the Intervention in the Two Comptown Sites

CHARACTERISTICS

LOCALITY "A"

LOCALITY "B"

GENERAL
Scope of the experiment
School structure
elementary school
secondary school

SCOPE OF THE INTERVENTION
Elementary schools
Schools
Students
Teachers
Secondary Schools
Schools
Students
Teachers

the entire city

grades 1-6
jun. high 7-9
sen. high 10-12

6 (all)
2, 000
200

(R

. 430
125

three neighborhoods

grades 1-8
grades 9-12

9 (of 23)
3, 400
260

none
none

none




Table 3: Indicative Physical, Activity and Content Accommodations

in Classroom "6", School "Y", Locality "A"™ (1985, 1988)
ACCOMMODATION 1985 1988
PHYSICAL:

Instructional aids

Table & chair
organization

ACTIVITY:

Essential student
learning activities

Classroom behavior

Dominant teacher
delivery modes

CONTENT:
Curricular goals

"Whole Class" oriented
Facing classroom's
front (facilitating
frontal teaching)

Attentive listening &
imitating

Essentially controlled &
guiet; Occasional
misbehavior

Lecturing &
demonstrating

Knowledge & basic skills
acquisition

"Group Work" oriented

Optionally organized in
activity centers for
group work

Group & machine
interactions; Exploring
& modelling

Noisy and constantly
moving; Minimal
mishehavior i

Tutoring & guiding
group & student machine
interactions; Using
computer based activity
as a main delivery
channel !

Development of new &
enriched content areas
such as: handling of
information; use of
multiple technologies
& multiple knowledge
sources




Table 4: Administrative, Social and Curricular Modifications

in School

"y", Locality "A“

(1985,

1988)

POLICY MODIFICATION

1985

1988

ADMINISTRATIVE:
Allocation policy
of instructional
aids

SOCIAL:
Role assignment

CURRICULAR:
Curricular
emphases

Special programs

Supply of identical aids
to different classrooms

Complete separation
between teaching &
learning activities &
responsibilities

Basic skills acquisition
& accumulation of
information

Special extra classes
for low achievers;

Supply of aids chosen
by the teacher to meet
her\his needs

Assignment of technical
& teaching roles to
students (e.g. older
students teach the
young)

Development of
interdisciplinary
inquiries; Information
handling & use of
multiple learning &
teaching strategies

Promotion of IT based
school activities: e.g.
computer game library;
school desk top
publishing; IT training
for teachers in &
outside school; Parents
IIT training




Table 5: Community Support and Centralized Educational Policies
in the Two Comptown Sites (1985, 1988)

CENTRALIZED POLICY LOCALITY "Aa" ~ LOCALITY "B"

PHYSICAI. SUPPORT: 1985: 1985:

Infrastructure & Firm municipal Vague municipal

equipment commitment to build an commitment to build an
IT infrastructure; IT infrastructure;

Firm commitment of the Vague commitment of the
Ministry of Education Ministry of Education
to support introduction [to support introduction
of IT infrastructure of IT infrastructure

& supply computers to & supply computers to
schools schools

1988: 1988:

Privale contributions of

computers to schools;

Municipal maintenance

of IT infrastructure &

of computers installed &

used in classrooms

PROFESSIONAL

SUPPORT: 1985: 1985:

Planning Municipal appointment of {Municipal appointment
experts to advise of experts to advise
purchase of computers & |purchase of computers &
develop networking develop networking
1988: 1988:
Experts follow up
development of
networking

ecia S: Promotion of special

training programs (e.g.
parents & senior
citizens training)

SOCIAL SUPPORT: 1985: 1985:

Involvement

Voluntary parents
activity in classrooms

1988:

parents*® participation
in the project's inside
& outside school
activity

parents attempt to
affect intervention
programs

1988:




Table 6:

Belief and Attitude Based Behaviors

in the Two Comptown Sites

AUTHORITIES
1985:

SCHOO
1985:

RINCIPA

TEACHERS
1985

LOCAL POLITICAL

S

current demands result in
longtime commitments

Convinced that computer
culture in schools serve
local interests;
participate in progress
& difficulties

Demonstrate consistent
attitudes; increase
involvement & commitment
to the project's success

Led to believe that the
promised innovations can
improve learning &
teaching; set priorities
that match the project's
operational principles

As the project moved
towards promised targets
augment involvement &
express specific
interests

Convinced that additional
work caused by the
project is worthwhile;
voluntarily participate
in training

Gained success in work
leads to interest &
involvement in the
achievement of specific
goals

SYSTEM BELIEF AND ATTITUDE BASED BEHAVIOR
LOCALITY "A" LOCALITY "B"
MINISTRY Positive attitude toward |Lack of confidence in !
1985: the research project the local authorities
generates support in the [generates limited :
project support in the project
1988: Positive field outcomes & ;Attitudes & support

remain unchanged

Approach Comptown as
one of the competing
projects; make no i
effort to support

Approach & support
remain unchanged

Led to believe that the
innovation can improve
learning & teaching;
express support in the
project

Doubt & dispute the
project's policies &
disappointed from
results

Internalize the
project's objectives;
voluntarily participate
in training

Difficulties to
implement the project's
working principles
result in no commitment
while continuing to ;
use the training offers:

of the project ;
J
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(To be continued)




(Table 6 continued)

SYSTEM BELIEF .AND ATTITUDE BASED BEHAVIOR
LOCALITY "aA" LOCALITY "B"
PARENTS Believe the computers
1985: carry a promise for
better education; They
support & are involved in
the project
1988: Responding to

enthusiastic reactions
of children parents
involvement is increased




Table 7: Preliminary First Stage Specifications
for the Construction of Reproducible Ecological Observations*

1

U P P UL R SV ST S

FACET INVENTORY ORGANIZATION INTRASYSTEMIC INTERSYSTEMIC
SETTING ACCOMMODATIONS| CHANGES
PHYSICALAvailable: Supporting: Accommodations ;Demonstrated
* Technology* Whole class [in physical changes in:
* Materials |* Group inventory and\ |* Social
* Learning * Individual or organization* Political
aids learning & appear in * Other
instruction combination
with * Involvement
accommodations [#* Support
in additional * Commitment
settings
ACTIVITY |Enacted: Supporting: Changes in Demonstrated
* Management|* whole class jactivity changes in:
style learning inventory and\ |[* Social
* Delivery * Group or organization;* Political
mode interactionsappear in * Other
* Learning * Individual combination
mode learning with * Involvement
* Student x accommodation * Support
Misbehaviors machine in additional * Commitment
* Minimal interaction [settings * Other
* Occasional
* Severe Session:
* Shortened
* Regular
* Shortened
CONTENT |Enacted: According to: [Stimulated by: |Demonstrated
* Goals: * Hierarchical|* New needs changes in:
Social; principle * Student * Social
Instruction: * Non feedback * Political
Technical hierarchicall|* Ideological * Other
principles consideration|involvement in
Curricular * Mixed * Professional |content issues

emphases:

* Basic
Skills

* High order
skills

* Technical
skills

* Other

Enhanced

Motivation:

* high

* Average

* Low

principles

consideration

t Formal notations are omitted from this preliminary presentation




Table 8: A Faceted Design for the Characterization
of IT Software Ecologically Sensitive Experimentations

FACET FACET ELEMENT

Type of 1. Subject matter bound

Information 2. Procedural

Cognitive 1. Low level (reactive)

Demands 2. Low level supplemented by a limited number of

higher level demands

3. High level & interactive (reflecting on and
constructing own learning processes)

Proximity to 1. "More of the. same" (not augmenting "zone for
Existing proximal development")
Learning 2. "Different & complementary" (augmenting "zone
Processes for proximal development")
Exposure to 1. Use of software in a non selective manner
Alternating 2. Use of software in a selective manner

Representations




Table 9: A Stepwise Design

of an Ecologically Sensitive Experimentation

with personal
assignment

STEP TREATMENT CONTROL POST TEST

PRE Equivalent: IQ & score distribution

CONDITIONS [Equivalent teacher evaluations

STEP 1 Teacher trained Teacher trained in !Skilled & selective
in subject matter]|subject matter use of software in
concepts & in concepts tentative classroom
a mindful use of session
the specific (treatment only)
software

STEP 2 Students trained |Students learn Skilled use of
to mindfully use |identical & software
the specific familiar subject (treatment only)
software with matter in a
familiar subject !different way
matter

STEP 3 Software used by {Student learn Achievement test
teacher & student;identical subject (treatment &
with curricular matter without the |control)
subject matter software

STEP 4 Software used Personal assignment Tests:

prepared without
software

Abstraction &
application of
basic principles of
the learned subject
matter;

Learning modes;
Pexrception of
learner & teacher
role

]




Table 10a Instructional Decision Making Facets and their Flements

her pedagogical
role**txz*

FACET ELEMENT
[A)] Goals of 1. Knowledge & comprehension
Instruction%* 2. Application
3. Analysis & synthesis
4. At least two of the above
[B] Responsibility 1. Curriculum expert
for the design of}2. Teacher
the content to be|3. Student
learned 4. Two or all of the above
(who decides ?)
[C] Type of learning [1. Teacher directed activities
activities that 2. Group directed activities
teacher decides 3. Individualized & autonomous activities
to enhance#*#* 4. At least two of the above activities
[D] Enhanced learning|l. Reaction to uniform structured learning
styles**%x materiais
2. Interaction with peers & learning materials
3. Rediscovery & construction of new knowledge
4. Learning in more than one of the above
modalities
[E] Teacher's 1. Dominating
perception of 2. Facilitating

_

*

L &3

L &1

1987;

The elements of Facet [A] are specified in accord with Bloom's

Taxonomy (Bloom,

1956)

Types of learning activities that teachers decide to enhance

(Facet [C]) are

discussed by Clements (1989)

Facet [D] combines learning styles distinctions and concepts
discussed by: Henson & Borthwick (1984); characteristics of
interactive learning defined by Vygotsky (vygotsky in Wertsch,
1985 and applied by Tharp & Gallimore (1988), and discovery and

constructivism notions elaborated by: Bruner,

Clements, 1989;

Cohen,

1966, Give'on,

1988; Papert, 1990

xxx% The distinctions presented in Facet [E] are based on Lamm (1976)
and on Bennet et al.

(1976)




Table 10b: Faceted Specifications of Software Properties and

Software Classification

FACET

ELEMENTS

SOFTWARE

MANAGERIAL PROPERTIES

software's algorithm &
construct content

[F) Software control ;1. Control devices pre- Drill & Practice
devices programmed into software {Tutorial -

2. Software partially Simulation
controls user's activity |Games

3. Software is not equipped |{Open tools
with a user's device Ed. programming

[G] Record keeping¥* l. Programmed record keecping{Drill & Practice

provides automatic Tutorial
feedback to user

2. Software provides Games
optional record keeping Simulation

3. Record keeping device is {Open tools
not available Ed. programming

INFORMATION

PROCESSING**

[H] Provision of 1. Information is entirely Drill & Practice
Information being provided by software Tutorial
processed i

2. Information is jointly Games
provided by software & Simulation
user
3. Information is provided Open tools
by user Ed. programming

[I)] Relation between 1. Structured: curricular Drill & Practice
software & content & software Tutorial
content being cannot be separated

; processed 2. Semi-Structured content Games
f provided by software Simulation
3. Software is content free |[Open tools
Ed. programming
'[J] Users® 1. Software directed Drill & Practice
involvement in information acquisition Tutorial
information 2. User is required to Games
processing*z# discover & react to a Simulation
software's algorithm
3. User is required to use Open tools

Ed. programming

]

Feedback to learners and teachers concerning the student's

e |




progress .
is frequently discused in the educational

literature(e.qg.,Clements,
1989; Ediger, 1988; Give‘'on, 1988)

** The distinctions provided by Facets [A],[B)] and [C] elaborate
Give'on's Taxonomy of Educational Software (1988)

*** The assumption that directed activities exclude generative
information processing is based on Wittrock's theory of generative
thinking (Wittrock, 1974)




Table 11: Mapping Elements of Patterns of Instruction
on Elements of Software Properties

SOFTWARE PROPERTIES*%
PATTERN OF Software |Provision|Relationj{Users®
INSTRUCTION Control of Info. |Between |Involved
PROPERTIES Devices being Software|in
Processed| & Info.
Content {Processing
10203 1520201 ] 213012} 3
Goals of Instruction
1 Knowledge & Comprehension |PT;MS PT{MS:L PT|MS PTIMS
2 Application MS |LSR LSILS MS|LR MS LR
3 Analysis & Synthesis LSR LSR LR LR
4 At least two of the above*
Curricular Decisions
(Who decides ?)
1 Curriculum expext PT|MS PT | MS PT|MS
2 Teacher MS MS MS|L
3 Student MS|LSR MS:LR MS|L
4 At least two of the above
Learning Activity
1l Teacher directed PT|MS PT|MS PT|IMS|LRIPT|MS LR
2 Group directed MS|iLR MS LR MS MS LR
3 Individual & autonomous PT|{MS!LR !PT|/MS!LR MS{LR|PT|MS |LR
4 At least two of the above
!Enhanced Learning Style**
1 Reaction to structured PT PTMS PT|MS PT
learning materials
2 Interaction with peers & MS MS MS MS
learning materials
3 Rediscovery & construction MS{LR MS LR MS LR LR
of knowledge
| er's
. Pedagogical role
1l Dominates PT;MS PT|MS PT|MS PT:MS
l2 Facilitates MS | LR MSiLR i MS__.lLRL MS (LR
Types of Software: P - Drill & Practice; T - Tutorial;

M - Games; S - Simulation;
L - Open Tools; R - Programming
* Cross classifications of software properties and a
combination of instructional elements depend on the specific
combination selected
** The numbers (1,2,3) refer to the elements of the facets




Appendix 1:
Comptown's Operational Principles

1."High density" allocation of computers enabling each student to have

access to a computer for two to three hours a week in a computer
laboratory as well as in the regular classroom.

Integration of varied computer application into as many subject
matters as possible focussing on "open tools" rather on "closed"
and "structured" software.

A system approach selecting ways and means aimed at.the whole
educational system (i.e. all the participants and all the
activities), as well as its close environment.

A multimedia approach: where participants interacting with diverse
representations of the same task could change the course of
learning and instruction and develop exploratory processes.

Use of computer tools in a mindful manner: where students and
teachers could be encouraged to reflect on their work and develop
new understanding of the learned task.

Involvement of the classroom nesting systems (school, community,
ministry) in the project's making and implementing policies.
Cultivation of positive attitudes and beliefs towards the project
within and across the systems that create the ecological

environment in which the innovation is designed to take place.




Policy Making Institutions

Community & Business

School

Classroom

Social Support Systems

Local

& National

Figure 1: Schematic of the Innovation's Ecoloqy

POLICY MAKING INSTITUTIONS (Local, Regional, National)

LOCALITY "A" LOCALITY "B"

School A School B School A School B
Class A Class A Class A
Class B Class B

Fiqure 2: Ecological Units of Analysis Used in Comptown
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Abstract

The four goals of this discussion are to: 1) Discourage distance learning evaluation questions and tactics
which have not proved useful in the past. 2) Persuade distance learning evaluation designers to
distinguish between the effects of two distinctly different technologies; delivery and instructional
technology. 3) Offer brief descriptions of evaluation plans, questions and examples associated with
delivery technologies on the one hand, and instructional technology on the other, and 4) discuss issues
related to the cost effectiveness evaluation of distance learning.

Introduction

The history of distance learning technology claims (1, 2, 3) and counter claims
(4, 5, 6) have led many to accept the need for a change in the way we evaluate new
technologies for distance learning. The number of new and complex technological
devices that could be applied to distance learning is increasing. Cuban, in his recent
book Teachers and Machines (2), cautions that “determining what levels of
[technology] use now exist is like trying to snap a photograph of a speeding bicyclist".

With adequate evaluation in place, we may be able to “tune" existing
technologies so that they meet our needs, anticipate new developments, and settle
disputes, in time to plan and operate rational, cost-effective K-12 local, regional and
national distance learning systems. Underlying all evaluation plans are beliefs about
how we employ technology so that we enhance the delivery of instruction and the
quality of learning experiences. At the heart of every evaluation plan is a curiosity
about how new technologies can increase student access to quality instruction and
thereby increase their academic achievement, motivation and value for learning.

The purpose of this discussion is to a) discourage evaluation questions which
have not proved useful in the past, b) suggest that future evaluations distinguish
between the effects of delivery and instructional technologies, ¢) offer some generic
evaluation plans, questions and examples associated with delivery and instruction; and




d) discuss issues related to the evaluation of distance learning cost-effectiveness.
I. Forming and Asking Evaluation Questions

Evaluation is the process by which we judge the "worthwhileness" of something.
Since our values govern all evaluation activities, we need to be clear about the kinds of
distance learning evaluation questions that will meet the needs of our schools and
communities. The questions we decide to ask about distance learning and the
evaluation instruments we employ will necessarily keep us ignorant about some
matters while informing us about others. Evaluation questions carry implicit
assumptions and beliefs about the significance of different elements of distance
learning and their impact on desired outcomes. For example, if we ask whether a new
teaching medium produces more student achievement than traditional media, we have
assumed that media are able to influence student achievement -- an assumption which
has been seriously questioned (4,5,6).

One of the most important recommendations underlying this discussion is that
all evaluations should explicitly investigate the relative benefit of two different but
compatible types of distance learning technologies found in every distance learning
program. One technology influences the delivery of schooling and another technology
influences instruction. These two technologies are typically confused in most distance
learning evaluations. Technology benefits caused by instructional technology are
attributed to delivery technologies, and vice versa. The confusion of technological
benefits can lead to inappropriate policy decisions. At the root of the confusion one
finds different definitions of “technology".

A. Which Technology for What Purpose?

It its most general sense, The term "technology” suggests the application of
science and experience to solving problems (8). The major obstacle in our past
struggle to understand the contribution of new technology in distance learning is that
we have confused the contributions of these two different technologies.

One distinct class of technologies results from the application of various
scientific and engineering principles to hardware that records and transmits instruction.
These “media” technologies are associated with the physical sciences that have
produced the new electronic media (e.g. fiber optics, television, computers). Delivery




technologies increase student and teacher access to learning resources which is one
of the most important goal of distance learning.

A second type of technology applies various social science principles to
suggest teaching methods and curriculum choices. This instructional technology
draws primarily on research in teaching, learning and motivation to enhance student
achievement. The "products" of an instructional technology are new instructional
design theories (9), teaching methods and motivational strategies (4) which can be
embedded in “courseware" (instructional materials) for distance learning. One purpose
of this discussion is to recommend that all evaluations of distance learning programs
attempt to provide reliable and valid determinations of the separate influence of delivery
and instructional technologies.

rating Delivery and Instructional tion

Support for a separate consideration of delivery and instructional technologies in
evaluation is well established in the research literature but rare in evaluations or
program planning. Wilbur Schramm, the most established reviewer of media studies in
education, concluded (10) that “...learning seems to be affected more by what is
delivered than by the delivery medium" (p.273). For the past two decades at least,
most of the exhaustive analyses of research that compared the learning benefits of
different media (4, 5, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23) could be
summarized with the analogy that media "... do not influence learning any more than
the truck that delivers groceries influences the nutrition of a community” (11, p.3).
Distance learning media are vehicles that transport instruction to students. The choice
of vehicle influences the important outcomes of student access, and the speed or cost
of the delivery but not the learning impact of the instruction that is delivered to the
"consumer”. Delivery vehicles indiscriminately carry helpful, hurtful and neutral
instruction.

Il. Choosing Critical Indicators For Distance Learning Technologies

Among the specific issues that must be addressed in future evaluations of local
applications of distance learning technology are: "What aspects of evaluation planning
enhance the usefulness of information for decision makers?*, and "How might we
coliect information which will aid in our judgement about the different influences of the




delivery and instructional features of the program?” (12, 21, 24). While a number of
evaluation concerns apply to some but not all programs, three generalizations seem
useful to all, 1) Adopt an early concern for evaluation, 2) Use a multi-level evaluation
plan, and 3) Conduct formal cost-effectiveness analyses.

A. Adopt An Early Concern For Evaluation

Both evaluation specialists and administrative decision makers need to be
involved early and actively in distance learning system design. Past experience
suggests that waiting until a system is designed before thinking about evaluation has
been common but very wasteful. It is critical to have early information about, for
example, exactly what set of conditions are being replaced by new distance learning
programs. One way to accomplish this would be to spend an ample amount of time
during the program planning stages to carefully describe the specific problems we
wish the new approach to solve. We should describe how we will measure the current
conditions (e.g., a base-line measure of the existing situation --including the views and
impressions of the "stakeholders") and thoroughly discuss what we believe to be the
alternative solutions to the problem(s).

If an evaluation plan is developed as the program is planned and implemented a
number of advantages are realized. In the area of computer assisted learning, Henry
Levin (25, 26, 27) describes eight exemplary cost-effectiveness evaluation programs.
Each of these good examples collected baseline measures of the problems they were
trying to solve. Each of the eight programs began their concern with evaluation at the
start of their planning.

Early evaluation makes it possible to determine which aspects of a distance
learning program were positive and which were negative. Negative aspects can then
be modified and the positive accentuated to achieve maximum benefit. For example,
most distance learning programs attempt to bring a much richer set of curriculum
choices and quality teaching to K-12 school programs. Program planners might begin
with an analysis of options (the variety of media available to deliver new curricula) and
their audience (e.g. measure the number of “students” who would enroll in new
courses). Early concern with evaluation results in the collection of information on both
the need and the audience for distance learning as well as the existing alternatives.




Another advantage of early evaluation involvement is that an ongoing evaluation plan
can be developed. Too often programs are developed, implemented and at some
later stage the program planners remember that “we have to do some evaluation®. As
a result, very little is learned about the program being studied which is useful either for
the immediate program or for other distance learning ventures. It is early evaluation
planning most often yields a useful information and yet it is a rare phenomenon. Levin
noted that his search for adequate cost effectiveness evaluations was difficult. He
found that only one in six published reports were adequately designed. Since most
reports are not published, one suspects that early evaluation is not our typical
procedure at the moment.

The second general direction that is useful for all distance learning programs is
to adopt a multi-level evaluation plan.

Muiti-

The two levels of evaluation that most often seem to give useful development
information are to measure: 1) participant reactions, and 2) the achievement of
program objectives.

1) Participant reactions to distance learning program effectiveness is the most
common (and unfortunately, often the only) level of evaluation attempted by K-12
school districts. Typically, this level of evaluation employs printed forms containing a
combination of questions designed to inquire about the “feelings" and "impressions” of
different groups who are involved in the program. A common question is "How would
you rate the quality of the teaching in this program?" (typically rated on a five point
scale that ranges from Exceptional through Average to Poor). Items such as "List what
you think are the STRONG [or WEAK] points of the program?" permit the respondent
to write in personal views and comments. Questionnaire forms are most often used
for reactions because they protect the anonymity of respondents and therefore, we
presume, increase the candor of the responses. Forms are often sent to all of the
program participants but are filled out and returned by cnly a small percent of those
who receive them. Participant Reactions are useful provided that they do not serve as
they only level of evaluation data. They should be used primarily to uncover both
informal participant impressions and ynanticipated benefits and problems. Reaction




items should be divided between those that deal with the medium (e.g., ease of
access, reliability or technical quality of transmission or machines, space allocation
issues) and those associated with the instruction (e.g., the quality of teaching, how
things learned in the program were used outside of class).

The advantage of collecting participant reactions is that program mangers get
informal impressions of the programs and often uncover unanticipated results. For
example, the Northeastern Utah Telelearning project, which uses microcomputer
audiographic instruction transmitted between remote schools over telephone lines,
found an unexpected problem because they used open-ended reaction forms.
Students complained that in the early stages of the program it was very difficult to
contact a teacher to get help when it was needed. On the other hand, the Interact
Instructional Television Network in Houston Texas used a similar instrument and
discovered an unexpected positive outcome of their project. It was observed that
students in small television reception rooms tended to help each other a great deal
during the instructional program. They could help while the program was continuing
without disrupting the teacher or other students. This "peer tutoring" seemed to be
having a positive impact on student learning and motivation. Upon closer inspection
the tutoring activity seemed to be due to the fact that the microphone which the
students used to communicate with the teacher at another location had to be turned
on to function. When the microphone was turned off, the students could consult
among themselves before they turned it on to answer a question or discuss a point
with the teacher. When following up on the peer tutoring finding, the Houston project
uncovered the fact that some of the tutors hired to supervise the student television
reception rooms were demanding that the students "keep quiet" which discouraged the
peer tutoring. The tutors had assumed that talking indicated a “discipline problem" and
had to be corrected by their supervisors. Once discovered, the peer tutoring can be
encouraged and its barriers can be eliminated (e.g., though adjusting the training of
tutors in the Houston example).

The disadvantages of participant reaction data is that it is seldom gathered in
such a way that it can be considered either a reliable or valid reflection of the program.
This problem is not serious. Unreliable information can still provide useful information




as it did in the Houston project. However, questionnaire data can be representative if
evaluators select a random sample of participants large enough to engage a
meaningful number of each group involved in the project. To increase participation
evaluators have found it useful to send each randomly chosen participant a card telling
them that they have been selected, that their response is vital and to expect the
questionnaire soon. Follow up notes to all those chosen can encourage laggards to
send in their forms without violating anonymity. Depending on the numbers involved in
the entire program, a small (five to ten percent) random sample of participants can
give a very accurate impression of the reactions of the entire group.

Questionnaires should be used at various stages in the program development,
including very early on. Unanticipated problems and benefits uncovered by
questionnaires usually require much more careful study. For example, when students
in most distance learning programs are asked, a majority will typically state that they
would not continue to elect a distance learning option if they could choose a
"traditional class" as they did in the Northeastern Utah Telelearning Project. The fact
that students would elect a traditional program if one was offered does not indicate
that the Utah projact failed. Upon closer inspection it is often found, as is suspected in
the Utah case, that students sometimes feel isolated in distance learning settings and
would therefore select more traditional options for social and "nonacademic” reasons.
This is particularity true of middle and high school students. They typically have strong
social needs which are not always met in distance learning programs.

Other problems which can be spotted using the "early warning system" of reaction
questionnaires are communication problems between participants, the extent and
impact of technical difficulties, inappropriate implementation of plans and opportunities
to extend the program into new areas. Yet in even the best of circumstances, reaction
forms will not give solid information about the achievement of most delivery and
instructional goals. For this purpose, programs need to adopt a second level of
evaluation.

2) Achievement of Program Obijectives is the second and most substantive
evaluation goal. Formal measurement of objectives is usually considered by evaluation
specialists to be the most crucial information to be gathered. Objectives should be




divided into at least two categories, those associated with delivery and those
associated with instruction. One category of outcome which is common to both types
of technology is cost-benefit. The discussion turns next to outcomes specific to
instructional technology, then to delivery technology outcomes and finally to cost-
effectiveness measurement.

Instructional Technology Objectives include student learning, motivation, transfer
of knowledge and values. These important goals are influenced by the “courseware"
or instructional programs that are developed and/or chosen and transmitted to distant
learners. In most cases, instruction is designed by teachers. In some cases, already
developed courseware is purchaced and transmitted to remote sites. The instructional
decisions that are embedded in each lesson influence student learning and motivation.
Different teaching method and curriculum options have very different effects on student
learning which might be explored in evaluation. So, distance learning evaluation might
include at least the following four types of questions related to instructional technology.

“Which of the curriculum and teaching method choices in a given

distance learning program impacted student achievement and

subsequent ability to use (transfer) the knowledge acquired outside

of the instructional setting?"

Achievement can be tested with teacher or publisher achievement tests. Increasingly
schools are interested in the extent to which students transfer what they learn outside
of school. Transfer might be estimated by open ended questions on reaction forms. If
the school district has other schools receiving similar curricula from different delivery
forms, an obvious opportunity exists to check on any achievement or motivation
differences between the options. When possible, alternative teaching methods and
curriculum choices should be explored in order to maximize the learning of different
kinds of students. For example, highly structured and supportive instruction might be
contrasted with a more "learner directed" and discovery approach to curriculum (12).
Many programs have found that students who are, anxious or have learning problems
profit a great deal from added structure and support. Whereas students who are more
independent and able tend to benefit more from a discovery approach (11).

"What impacted student and teacher motivation to learn and invest effort




in making this program a success?"

Current theories of motivation have introduced a very novel element in distance
learning programs and evaluation. Formerly, it was thought that media choices greatly
influenced both student and teacher motivation. Now it is understood that motivation is
influenced by beliefs and expectations and is therefore due to “individual differences in
beliefs about media" and not to the media per se (5, 11, 22). Yet, it is a common belief
that students are excited and teachers are threatened by new media (2). There is
recent but solid evidence that when students expect that a new medium will make
learning easier and more "entertaining”, they like it. However, there is good evidence
that their liking does not lead them to work harder (3, 5). Quite to the contrary, the
more they think a medium makes learning "easy" the less effort they will invest to learn
(18, 22). This effect has been explained as a misjudgment about the kind of effort that
is required to learn based on our previous experience and expectations. For example,
American students typically assume that television is an “easier” medium than books or
teachers, probably because of their use of the medium for entertainment. This
reaction on the part of our students is quite different than that of Israeli students who,
on the average, have been found to invest more effort in television because their early
experiences with television have been less entertaining and more demanding
intellectually (22).

There is additional evidence that students will not invest effort if they believe a
medium to be very difficult. With American children, this is sometimes the reason for
their lack of willingness to read (18, 22). So the greatest motivation is invested in
media and instructional programs that are perceived as being moderately difficult. This
evidence would suggest that one way to influence student motivation would be to
select "moderately difficult" media. However the evidence also suggests that student
and teacher beliefs about media difficulty change over time, sometimes radically (5).
The more stable predictor of motivation seems to be student beliefs about their own
ability and the demands placed on them by different instructional tasks (18). This
would suggest that we should evaluate the students perceptions and beliefs about the
learning tasks contained within the media employed by distance learning programs
and their own gelf efficacy as learners. This form of evaluation could be embedded in




reaction questionnaires.

“Which of the curriculum and teaching method choices in a given

distance learning program impacted student and teacher values for

what was learned and subsequent motivation to teach and learn

and to use what was learned outside of the instructional setting?"
Reaction questionnaires which are carefully constructed and administered will give a
good indication of student and teacher values related to the program, teaching and the
curriculum. Negative value statements do not always reflect negatively on the program
(recall the students in the Utah project who liked traditional classrooms better than
distance learning because of social opportunities). Generally one hopes to foster a
positive value for learning and new curriculum options with distance learning. Shifts in
attitude that result from changes in the program can be monitored if reaction forms are
sent periodically (every few months) throughout the development stages.

“Which of the curriculum and teaching method choices in a given

distance learning program impacted the cultivation of different

kinds of knowledge including procedural skills and higher order

thinking, learning-to-learn and metacognitive skills?"
While higher order skill learning is more difficult to assess than ordinary "achievement®,
some programs have been successful in this area. Perhaps the most exciting current
example in wide use is to be found in the HOTS program developed by Dr. Stan
Pogrow at the University of Arizona (24). HOTS (Higher Order Thinking Skills) is a
successful and widely disseminated program for Title | students. Teachers in the
program use computer lessons, class exercises and discussion to increase the
thinking and study skills of students. Evaluation involves the ongoing use of
standardized tests, noting changes in the quality of questions students ask and
analyses of their class assignments. While a few formal measures of thinking and
study skills exist (and more are being developed), program managers might consuit
with evaluation specialists about selecting and developing tests to measure problem
solving and study skill development (24,25).

While learning, values and study skills are important instructional outcomes for
distance learning, the delivery technology will influence yet another type of outcome.
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Delivery Technology transmits various forms of instruction to students. The
recent introduction of computers to schools has resulted in more attention to
technology delivery benefits (15, 24). Evaluation questions associated with delivery
technologies include attempts to assess the effect of medium on 1) student access to
a greater variety of curriculum choices, 2) school or program utilization of resources,
and 3) the reliability of delivery choices. Questions one typically finds in the evaluation
of media include:

*Did the distance learning media maximize student access to new,

and/or high quality courses and teaching when compared with

other choices?"

Access to new or beneficial courses and instructional techniques or teachers is one of
the primary objectives of most distant learning programs. Collecting access data often
involves comparisons between different ways to deliver courses or the size of
enroliments in classes both before and during the implementation of the program. For
example, the Share-Ed program in Beaver County Oklahoma used a new fiber optic
network to provide new curriculum to rural schools. They collected participant
reactions on the advantages of the increased curriculum choices offered to students
who allowed to take college credit courses in high school as a result of the new
system. These reactions, when combined with baseline and process data on actual
enroliments, provide good evidence of the extent of access provided by the innovation.
Evaluators should carefully consider increased or enhanced access of minority, older
or widely dispersed student groups.

While "access" usually suggests the availability of new curriculum options, it can
also imply teacher access to students on a more personal level. Teachers in the
Houston Texas InterAct Instructional Television systems report problems with their
personal and immediate access to students during instruction in order to "check their
reactions or mood" and adjust their teaching accordingly. Whereas teachers using
computer delivered courses often report increased “individualized" access to students
and enjoy the opportunity to "watch them learn".

"Did the media influence the utilization of school and community

educational resources (e.g.space, equipment, skilled teachers, new
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courseware developed at one site but not readily available at

others)?"
It is often the case that because distance learning programs are recorded and
distributed to many different sites, the best teachers are made available to many more
students. Evaluators might track statistics about how the background and/or training
of teachers in distance programs compare with district averages. An instance of a
different kind of utilization is to be found in the Beaver County Oklahoma Share-Ed
program. The local telephone company was installing fiber optic communication lines
to improve local service. The system was capable of handling far greater transmission
volume than the existing usage anticipated in the communities served. The school
system's use of fiber optic lines for television and voice transmission for distance
learning utilized unused space on the system. Since distance learning courses are
often provided to fewer students per school than the average course, they often make
use of under utilized rooms (e.g. storage spaces) and equipment.

"Are distance learning media more reliable than other alternatives?"
One of the primary concerns expressed by the critics of distance media is their
technical reliability. In the Beaver County Oklahoma television system for example, the
reaction forms used in evaluation only picked up technical problems when the students
were asked to describe "weak points" of the system. None of the administrators
noticed technicai problems, eleven percent of the teachers mentioned reliability, but
thirty six percent of the students responded to the reaction form by going into detail
about microphone feedback, distracting equipment, out-of-focus pictures, equipment
noises and color problems. This difference in reporting reliability problems probably
stems from the amount of experience each group had with the actual television
transmission. However, program evaluation should establish regular checks by
technical staff on these problems in order to judge the severity of participant reactions
and make repairs when necessary. When technical transmission problems are not
solved, they can decrease achievement scores and reduce participant commitment to
the system.

In all successful distance learning programs, delivery (media) technology and
instructional technology must work together. The delivery features of new media must
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be employed so that they will eventually save precious educational resources.
Curriculum and instructional design must be utilized so that they support the effective
learning and transfer of important concepts. Instruction must be developed to reflect
the special delivery characteristics of different media. In addition however, communities
and funding agencies are increasingly concerned not only with the effectiveness but
also the cost of distance learning programs. Cost is a "goal” or "outcome” of both
dslivery and instructional technologies.

Ill. Cost-Effectiveness Evaluation

During an evaluation of the separate delivery and instructional value of distance
learning program effectiveness, cost data should also be collected. This parallel
activity allows us to combine “effectiveness"” (i.e., delivery and instructional outcomes)
with “cost" data to provide cost-effectiveness information to decision makers.

In many ways, cost-effectiveness ratios are the most interesting information we
can supply to school officials, taxpayers and their elected representatives. Limited
educational resources will eventually require a much greater emphasis on both the
monetary and time cost of new programs.

A. Delivery Technology Cost

Evaluations that precede the introduction of new media should explore the costs
of various alternatives. In many cases, older technologies (e.g., tutors, books,
cassette television programs, the mail system) are cheaper in monetary cost but very
“expensive” in delivery time and reliability. Evaluations of costs should always consider
trade-offs with cheaper and more traditional delivery options. There is evaluation data
which indicates, for example, that tutors who are trained and paid minimum wage are
much cheaper than computers for some instructional purposes (25).

Evaluations which are conducted during the introduction and maintenance of a
distance learning program are advised to adopt the "ingredients” costing approach
described below.

B. Instructional Technology Cost

There are a great variety of different school and community goals that influence
evaluation criteria under the general heading of instructional effectiveness costs. The
cost involved in increasing student motivation, learning and transfer are being
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questioned with greater frequency. School districts may wish to consider collecting
cost data which will aid policy makers. The development of an instructional technology
yields a variety of teaching, motivation and transfer outcomes at very different
monetary costs.

Besides monetary cost, schools are increasingly interested in the time costs
associated with the mastery of different learning or performance goals. Some types of
learning tasks consume much more “teaching time" and/or “learning time*(5). For
example, it takes much longer to teach a student study skills than to teach
memorization of facts. it also takes longer for a student to learn procedural knowledge
to the point where it becomes automatic -- about 100 hours of practice for even simple
procedures is the current estimate. Therefore, there will be more and more emphasis
on the time costs of different instructional technology options. In many areas, the
cheapest option is not necessarily the best. In the same way, the quickest option
among instructional technologies is not always the best. Students who learn faster do
not necessarily learn better. The new "cognitive" learning theories provide the insight
that it may be more important to know how students reach learning goals than to
know that they get correct answers on examinations. It often takes longer for students
to learn in such a way that their correct answer on a test reflects “deep cognitive
processing” and the exercise of "higher order cognitive learning skills", than to take a
surface level shortcut. Educators need to be wary of focusing evaluations on time
savings at the expense of the quality of learning.

Generally, once a distance learning team has worked out the list of goals
associated with both monetary and time costs, an evaluation design can be chosen.
One of the first issues to be confronted is the choice of how the data reflecting costs
will be gathered. While there are a number of methods, one seems particularly
applicable to both delivery and instructional technologies - Levin’s (25, 26, 27)
ingredients method.

The Ingredients Method of Determining Costs While there are a number of
emerging ways to determine local costs and efficiencies, one of the soundest and

most comprehensive is the "ingredients method" developed by Henry Levin at Stanford
University (25, 27). It " requires identification of all of the ingredients required for the ...
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[distance learning] intervention, a valuation or costing of those ingredients and a
summation of the costs to determine the cost of the intervention® (27, p. 3). In the K-
12 setting, cost is defined as the value of what is given up by using resources in one
way rather than for its next best alternative use. For example, if teacher time is given
up then it may not be used for other purposes. Therefore, the cost of teacher time is
assessed by assigning a value to what is lost when teachers are assigned to distance
learning technology programs.

The ingredients method is implemented in two stages. In the first stage, all
necessary program ingredients are listed. The identification of ingredients requires that
we list distance learning program necessities associated with five categories: 1.
personnel, 2. facilities, 3 equipment, 4. materials and supplies and 5. all other. In the
second stage, each of the ingredients listed in each of the five categories is valued.

Space limitations preclude a complete description of the ingredients method but
a review of Levin (26,27) will provide most of the information needed to determine
ingredient costs. Levin gives specific technology examples which are very relevant to
the kinds of programs now evolving in many schools and he urges complete listings of
ingredients. For example, he requires that all "donated" time of volunteers and outside
organizations be included as a personnel ingredient if it is necessary for the conduct of
the program. He reasons that failure to cost donated time will give an unrealistic
picture of the "replication" expense. He also claims (26) that, in the rare instance
where one finds a complete costing of technology-based programs, one often finds
evidence that the organizational climate greatly influences cost-benefit ratios. Some
organizational plans seem to be much more efficient than others.

IV. Conclusion

In the past, distance learning evaluations have typically been conducted as
“afterthoughts” and have relied heavily on reaction questionnaires which are unreliable
and nonrepresentative of the participants invoived. Even when evaluations attempted
to collect information about changes in student achievement, questions were asked
which confused the separate contributions of delivery media and instructional
technology.

In order to identify the strong features of distance learning programs and eliminate
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weak features, more robust evaluation plans must be adopted in the future. These
plans should be firmly based on the experience of those who have struggled with
technology evaluations in the past (27). Three features are recommended: First,
evaluation should begin at the start of distance learning program planning. An early
commitment to evaluation will provide much more useful information about the
strengths of a program as it develops. Changes can be made during the formative
stage in time to strengthen the plan. The second recommendation is that all programs
should adopt a multi-level evaluation plan. The different role of qualitative (e.g.
questionnaire) and quantitative (e.g. student achievement scores, monetary costs) data
should be decided. Delivery and Instructional evaluation should be separated and a
variety of goals assessed. Finally, new techniques are available for cost-effectiveness
evaluation of distance learning programs. Levin’s "ingredients” method is suggested.
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What do evaluation studies say about computer-based
instruction? It is not easy to give a simple answer to the
question. The term computer-based instruction has been
applied to too many different programs, and the term
evaluation has been used in too many different ways.
Nonetheless, the question of what the research says cannot
be ignored. Researchers want to know the answer, school
administrators need to know, and the public deserves to
know. How well has computer-based instruction worked?

Reviewers handle such questions in two different ways.
Some reviewers are selective in their approach to evidence.
They hold that evaluation guestions are best answered by key
experiments, and so they sift through piles of reports to
find the studies with the most convincing results. These
studies become the focus of their reviews. Other reviewers
feel that evaluation results are inherently variable and
that evaluation questions are seldom decided by the results
of an experiment or two. Such reviewers put together a
composite picture of all the findings on a topic, and they
use statistical methods to identify representative results.
Both approaches are valuable. The first shows what
researchers and developers can accomplish in extraordinary
circumstances; the second shows what is likely to be
accomplished under typical conditions. We need both types

of reviews in the area of computer-based instruction.




All of my reviews on the topic of computer-based
instruction, however, have been of the second type. For
more than ten years, my colleagues and I have been
organizing and summarizing the evaluation literature on
computer-based instruction and trying to identify
representative results. I believe that comprehensive
reviews like ours provide a good context for discussing the
more exceptional results in the area. Our reviews provide a
background. They make discussions of exceptional results
more meaningful because they put them into perspective.

In this chapter, I focus on three aspects of evaluation
findings on computer-based instruction. First, 1 describe
the methods that my colleagues and I have used to create a
composite picture of findings on computer-based instruction.
Second, I present a broad overview of reviewer conclusions,
based on nine separate syntheses of the evaluation findings.
Third, 1 take a closer look at a set of nearly 100
evaluations of computer-based instruction in an attempt to
reach some more precise conclusions about its effectiveness.

Method

The review method that we use is called meta-analysis,
and it was given its name by Gene Glass in 1976 in a classic
synthesis of the literature on the effects of psychothe:rapy.
Glass used the term meta-analysis to refer to the
statistical analysis of a large collection of results from
individual studies for the purpose of integrating the

findings (Glass, McGaw, & Smith, 198l1). Reviewers who carry




out meta-analyses first locate studies of an issue by
clearly specified procedures. They then characterize the
outcomes and features of the studies in quantitative or
quasi-quantitative terms. Finally, meta-analysts use
multivariate techniques to relate characteristics of the
studies to outcomes.

One of Glass's major innovations was his use of
measures of effect size in research reviews. Researchers
had used effect sizes in designing studies long before meta-
analysis was developed, but they failed to see the
contribution that effect sizes could make to research
reviews. Glass saw that results from a variety of different
studies could be expressed on a common scale of effect size
and that with this transformation reviewers could carry out
statistical analyses that were as sophisticated as those
carried out by experimenters.

Size of effect can be measured in several ways, but the
measure of effect size most often used is the standardized
mean difference. Sometimes called Glass's effect size, this
index gives the number of standard-deviation units that
separates outcome scores of experimental and control groups.

It is calculated by subtracting the average score of the

control group from the average score of the* experimental
group and then dividing the remainder by the standard
deviation of the measure. For example, if a group that
receives computer-based coaching on the SA} obtains an

average score of 550 on the test, whereas a group that




receives conventional teaching averages 500, the effect size
for the coaching treatment is 0.5 since the standard
deviation on the SAT is 100.

Methodologists have written at least five books on
meta-analytic methods in recent years (Glass et al., 1981;
Hedges & Olkin, 1985; Hunter, Schmidt, & Jackson, 1982;
Rosenthal, 1984; Wolf, 1986), and reviewers have conducted
numerous meta-analyses of research findings. 1In a recent
monograph, for example, we described results from more than
100 meta-analytic reports in education alone (J. Kulik &
Kulik, 1989). 1In addition, meta-analytic methodology has
also been used extensively in psychology and the health
sciences. Reviewers have used it to draw general
conclusions on such diverse subjects as the effects of
gender on learning and the effectiveness of coronary bypass
surgery.

Overview

At least ten separate meta-analyses have been carried
out to answer questions about the effectiveness of computer-
based instruction (J. Kulik & Kulik, 1989; Niemiec &
Walberg, 1987). The analyses were conducted independently
by research teams at four universities: University of
Colorado, University of Illinois at Chicago, University of
Michigan, and University of Iowa. The research teams
focused on different uses of the computer with different
populations, and they also differed in the methods that they

used to find studies and analyze study results.




Nonetheless, each of the analyses yielded the conclusion

that programs of computer-based instruction have a positive

record in the evaluation literature.

The following are the major points emerging from these

meta-analyses:

1.

Students usually learn more in classes in which they
receive computer-based instruction (Table 1). The
analyses produced slightly different estimates of the
magnitude of the computer effect, but all the estimates
were positive. At the lowv end of the estimates was an
average effect size of 0.22 in 22 studies conducted in
elementary and high school science courses (Willett,
Yamashita, & Anderson, 1963). At the other end of the
scale, Schmidt, Weinstein, Niemiec, & Walberg (1989)
found an average effect size of 0.57 in la.studies
conducted in special education classes. The weighted
average effect size in the 9 meta-analyses was 0.34.
This means that the average effect of computer-based
instruction was to raise examination scores by 0.34%
standard deviations, or from the 50th to the 63rd
percentile.

Students learn their lessons in less time with computer-
based instruction. The average reduction in
instructional time was 34% in 17 studies of college
instruction, 24% in 15 studies in adult education

(C. Kulik & Kulik, in press).




‘U0 IDNUISU} U} uoj e NW}S-Ja)ndwod

= ISD fuo}3IONUISU} pabruBw-uBINAWOD = JWD ‘UOIIDNJISU} PBYD}|JUS-IB3INDWOD = [3D UOEIDNJIISU| PBIS|ISSR-48INUWOD = VD “IJON
zZZ'0 b IS2 ‘IWD ‘IVD asuaios aba| {0dadd UOSJBPUY B ‘BIIYSEeWEBA “II3LLIM
uoj 3 eonpa (S861 )
Ls°0 81 WD 3 ‘(ejdoIny ‘L1140 tejosds Suaqiem g ‘OBIWBIN ‘UIBISUIEM “IPIWMDS
Buiajos-warqoud ‘IWD
LE'O 8y fepa0INy ‘1 44a Asejuswa] 3y (5861 ) baaqiem g DajwaIN
T(883ud UL) NILNXM B AHINXY D U} Paiepdn
LE'O 8y 130 ‘IWO ‘1IVD Adejuswaill *(6861) SuUmouQg-}dabueg g “MEINY "ALINA D
c(ssaad up) EINY 8 ALINK D Ul
8€°0 o€ 132 “IWND ‘IVD uo§3IEONPa 3 iNpy paiepdn (9864 ) Qiemys g “XiIINXY ‘ALINH D
c(S8a4d ul) HLION® B NLINY "D
6Z°0 61 130 ‘IWD 'IVD aba| |0) u} pajepdn (9861) MNHINXY 8 ALK "D
yyeuw Asepuocdas
0 €€ 121403INY B (1}4Q g Adejuswaljl (LL61) Aaiaen
yyew Aaepuodas
90 vy 1ej40Int ¥ L1440 8 Aderusuall (1861) sudng
"(ssaud Up) NN B ALIN® "D U} paiepdn
sZ°0 s 130 ‘IWD ‘1VD AJepuosas “(S861) I § 1INy ‘sumouq-}usbueg
8245 309448 pazAleuw s8}pnys uoIwdy tdde jo adAy 18nay sisAjeue-ejan

efvuany

0 JOaqunnN

LeUOt IONJISU]

UO} 3IONJISU] paseg-uddindwo) Uo sasA|eue-elan 6 wods sbBujpul 4

i @aiqey




3. Students also like their classes more when they receive
computer help in them. The average effect of computer-
based instruction in 22 studies was to raise attitude-
toward-instruction scores by 0.28 standard deviations
(C. Kulik & Kulik, in press).

4. Students develop more positive attitudes toward
computers when they receive help from them in school.
The average effect size in 19 studies on attitude toward
computers was 0.34 (C. Kulik & Kulik, in press).

5. Computers do not, however, have positive effects in
every area in which they were studied. The average
effect of computer-based instruction in 34 studies of
attitude toward subject matter was near zero (C. Rulik &
Kulik, in press).

This brief review shows that there is a good deal of

agreement among meta-analysts on the basic facts about

computer-based instruction. All the meta-analyses that I

have been able to locate show that adding computer-based

instruction to a school program, on the average, improves
the results of the program. But the meta-analyses differ
somewvhat on the size of the gains to be expected. We need
to look more closely at the studies to determine which
factors might cause variation in meta-analytic results.

Specific Findings
The computer was used in conceptually and procedurally

different ways in studies examined in these meta-analyses.

Did all the approaches produce the same result? It seems




unlikely that they did. It is more reasonable to expect
different results from different approaches. A plausible
hypothesis is that some computer approaches produce results
that are better than average, whereas other approaches
produce below-average results.

To examine this hypothesis, I used a set of 97 studies
that were carried out in elementary school and high schools
(Table 2). Each of the studies was a controlled
quantitative study, in which outcomes in a class taught with
computer-based instruction were compared to outcomes in a
class taught without computer-based instruction. Most of
the 97 studies were included in earlier meta-analytic
reports on the effectiveness of computer-based instruction
(Bangert-Drowns, Kulik, & Kulik, 1985; J. Kulik & Kulik, in
press; J. Kulik, Kulik, & Bangert-Drowns, 1985).

There are a number of ways of dividing these studies
into groups by computer use. Early taxonomies often
distinguished between four uses of the computer in teaching:
drill-and-practice, tutorial, dialogue, and management
(e.g., Atkinson, 1969). Recent taxonomies collapse some of
these categories and add others. Taylor (1980), for
example, has distinguished between three uses of the
computer in schools: tutor, tool, and tutee. First, as a
tutor, the computer presents material, evaluates student
responses, determines what to present next, and keeps
records of student progress. Most computer uses described

in earlier taxonomies fall under this heading in Taylor's
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scheme. Second, the computer serves as a tool when students
use it for statistical analysis, calculation, or word
processing. Third, the computer serves as a tutee when
students give it directions in a programming language that
it understands, such as Basic or Logo.

Slavin (1989) has recently advocated a different way of
looking at instructional innovations. He believes that
innovations can be defined with different degrees of
precision. At Level I, innovations are defined vaguely.
According to Slavin, such grab-bag categories as open-
education and whole-language instruction suggest only fuzzy
models for instructional practice. The terms are used for a
variety of procedures that do not have a distinct conceptual
basis. Level II innovations are more clearly specified.
They usually have a conceptual basis that is easy to
describe, but in practice Level 11 approaches are
implemented in different ways. Slavin's examples are
cooperative learning, direct instruction, mastery learning,
and individualized instruction. Level III approaches are
precisely defined. They include specific instructional
materials, well-developed training procedures for teachers,
and detailed prescriptive manuals. Slavin's examples are
DISTAR and Man a Course of Study.

Computer-based instruction should probably be thought
of as a Level I, or loose, category. The term refers to a
variety of procedures with a variety of conceptual bases.

It is a chapter neading rather than a technical term. Under




this heading, however, fall several well-defined categories
of computer use, which can be thought of as Level II
categories. An important one is computer-based tutoring.
Most programs of computer tutoring derive their basic form
from Skinner's work in programmed instruction. Skinner's
model emphasized (a) division of instructional material into
a sequence of small steps, or instructional frames; (b)
learner responses at each step; and (c) immediate feedback
after each response. Level III innovations include common
instructional materials, training procedures, and so on.
One example is the computer-based material developed under
the direction of Suppes and Atkinson at Stanford and later
disseminated through the Computer Curriculum Corporation.

It seems reasonable to suppose that results will be
least consistent for the loose category of Level I
innovations and that results will be most consistent for
Level II and Level III innovations. To examine this
hypothesis, I carried out three separate analyses of the 97
studies of computer-based instruction in elementary and high
schools. 1 first examined the effects in all 97 studies.
This Level 1 analysis was broad; it made no concession to
the different uses of the computer in different studies.
Next, I examined subgroups of studies, grouping the studies
by major types of computer use. This analysis was of Level
11 categories of innovation. Finally, 1 examined effects in

an especially homogeneous subgroup of studies. Each of the




studies in this subgroup used similar materials in a similar
way. This final analysis focused on a Level III category of
innovation.

Le;;l I Analysis

The distribution of the effect sizes is nearly normal
in shape (Figure 1). The median of the effect sizes is
slightly lower than the mean, however, indicating a slight
degree of positive skew in the distribution. This skew is
produced by several studies with unusually high effect
sizes., Some analysts feel that unusually high and low
values are "outliers"™ that should be eliminated from a
distribution. Others believe that extraordinary results
merit careful scrutiny because they may provide valuable
clues about improving instructional treatments.

The average effect size in the total group of 97
studies, however, is 0.32. This implies that the average
student receiving computer-based instruction performed at
the 63rd percentile, whereas the average student in a
conventional class was at the 50th percentile. Effect sizes
can also be interpreted in terms of months on a grade-
equivalent scale. Pupils in elementary schools gain
approximately 0.1 standard deviations per month in their
scores on most standardized tests. An effect size of 0.32
can thus be thought of as equivalent to a gain of about 3

months on a grade-equivalent scale,
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The standard deviation of the distribution of effect

sizes is 0.39. This implies that approximately two-thirds

of all studies found effects between -0.1 and 0.7 and that

95% of all results fell between -0.4 and 1.1. Thus, there

is a good deal of uncertainty about the effects that

computer-based instruction will have in a specific setting.

Effects of computer-based instruction may be generally

positive but they are not totally predictable.

Level II analysis

The 97 studies can be classified by computer-use into 6

types:

1.

Tutoring. The computer presents material, evaluates,
responses, determines what to present next, and keeps
records of progress. Computer uses classified as drill-
and-practice and tutorial instruction in earlier .
taxonomies are covered by this term. The category is
therefore similar to Taylor's (1980) category of
computer-as-tutor.

Managing. The computer evaluates students either on-
line or off-line, guides students to appropriate
instructional resources, and keeps records.

Simulation. The computer generates data that meets
student specifications and presents 1t numerically or
graphically to illustrate relations in models of social

or physical reality.




4. Enrichment. The computer provides relatively
unstructured exercises of various types--games,
simulations, tutoring, etc.--to enrich the classroom
experience and stimulate and motivate students.

5. Programming. Students write short programs in such
languages as Basic and Algol to solve mathematics
problems. The expectation is that this experience in
programming will have positive effects of students'
problem-solving abilities and conceptual understanding
of mathematics.

6. Logo. Students give the computer Logo instructions and
observe the results on computer screens. From this
experience students are expected to gain in ability to
solve problems, plan, foresee consequences, etc.

Table 3 gives the means and standard deviations of effect

sizes for studies in each of these categories. The table

shows that effect sizes differ as a function of category of
computer use. Results for three categories of computer use
are especially noteworthy: results for computer tutoring,
results for Logo programming, and other results.

Tutoring. The distribution of effect sizes for studies
of tutoring is normal in shape (Figure 2). The average
effect size is 0.38; the median effect is 0.36; and the
standard deviation is 0.34. Comparing this distribution to
the distribution for all studies yields some potentially
important information. The mean of the distribution for

tutoring studies is slightly higher than the mean of the




Table 3

Effect Sizes for 6 Categories Of Computer-Based Instruction

Effect Size

Application Number of

Studies M SD
Tutoring 58 0.38 0.34
Managing 10 0.14 0.28
Simulation 6 .10 0.34
Enrichment 5 0.14 0.35
Programming 9 0.09 0.38
Logo 9 0.58 0.56




total distribution, and the standard deviation is slightly
lower. Thus, if we know that a school system is employing
its computers for tutoring, we would predict better than
average results for a computer-based program, and we would
also know that our predictions would be slightly more
accurate than predictions that did not take program type
into account,

Logo. The results for Logo programming are especially
striking., The average effect size is high for the whole set
of studies, but what is even more notable is the
inconsistency in results. Some of the highest effect sizes
in Table 2, for example, are associated with use of Logo.

In a study by Rieber (1987), the scores on measures of
problem-solving of children who learned with Logo were 1.5
standard deviations higher than the scores of children who
were taught by conventional procedures. But not all studies
produce such positive results. Most studies, in fact,
report very small effects from Logo programs.

One difference between Logo studies reporting strong
positive results and those reporting small effects is method
of criterion measurement. In all the studies with strong
positive results, the criterion test was individually
administered. In all studies with weak results, criterion
tests were group-administered. These facts raise questions
about the meaning of the average effect for Logo studies.
The strong positive results may have been produced by

unusual evaluator rapport with Logo students during testing
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or even by unconscious bias in administering and recording
responses of the Logo group. The fact is that Logo does not
measure up on group tests, and these were the tests that
were used in virtually all other studies of computer-based
instruction. The case for strong benefits from Logo
therefore seems unproved at this point.

Other uses of the computer. The record is also
unimpressive for other approaches to computer-based
instruction. Computef-managed instruction, for example,
seldom produces significant positive gains in elementary and
high schools. 1Its record of effectiveness seems similar to
the record compiled by diagnostic and prescriptive systems
that use only paper-and-pencil and printed materials in
instructional delivery (Bangert-Drowns, Kulik, & Kulik,
1983); Programming in Basic or Algol does not usually have
positive effects on student learning in mathematics courses.
Learning of basic mathematical concepts, in fact, sometimes
suffers with the introduction of computer programming into
mathematics courses. Use of computer simulations in science
courses also seems to have little effect on science learning
in elementary and high school courses. More and better
simulations may be needed to influence student examination
performance.

Level III analysis

The Stanford-CCC program was evaluated in nearly two

dozen controlled experiments during the past two decades.

No other program of computer-based instruction has been the




object of so much scrutiny. The accumulated studies on the
Stanford-CCC programs are a unique resource in the
evaluation of computer-based programs. We can use the
studies to gauge the consistency of results from a Level II1I
program. It is only natural to expect these results to be
less variable than those we have already reviewed. But is
the reduction in variability large or small?

The distribution of effect sizes from evaluations of
the Stanford-CCC program is nearly normal in shape (Figure
3). The average effect size is 0.40; the median is 0.39;
and the standard deviation is 0.23. The mean value is
slightly higher and the dispersion is clearly smaller in
this distribution than in the distributions in Figures 1 and
2. Thus, knowledge that a school is using the Stanford-CCC
materials allows us to make clear and accurate predictions
about what to expect. Gains of 1.4 years on a grade-
equivalent scale are likely with a year-long program,
wvhereas students who are conventionally instructed would
gain only 1.0 year on the same scale., Gains of nearly 2.0
years are also quite possible, whereas gains of less than
1.0 years are highly unlikely.

Summary

The above analyses show that it is possible to make
Level 1 generalizations about computer-based instruction.
One such generalization is that computer-based instruction
is usually effective instruction. But such a generalization

is too gross. There are too many exceptions to the rule.
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Our analyses also show that some types of computer-based
instruction work better than others do. Statements about
generic computer-based instruction are therefore of limited
value. We need to go beyond generic conclusions and make
statements about the effectiveness of specific types of
computer-based instruction.

Ideally, reviewers would like to be able to form Level
I1I generalizations about specific programs. If numerous
evaluations were available on each specific program of
computer-based instruction, then reviewers would be able to
state with confidence how effective each approach was. But
only one or two studies are available on most programs.
Only the Stanford-CCC program has been evaluated frequently
enough to warrant separate consideration in a Level III
analysis. Based on the evaluation findings, we can state
with confidence that this program produces positive results.
It will probably be a long time before we can state with
equal confidence that other specific programs work equally
well,

Until that time we will probably have to content
ourselves with Level II generalizations. If not so precise
as Level III conclusions, they are nevertheless superior to
the gross statements that result from a Level I analysis.
Level II conclusions provide a better guide to both
practitioners and researchers. They are an important step
on the way to understanding the effects of specific

programs.




Other Instructional Innovations

The most important Level II conclusion emerging from
our analysis was on computer-based tutoring. Results from
school programs that included such tutoring were better, on
the average, than results from program without tutoring.
But how important is the gain from computer tutoring? 1Is it
as large as the gain from other innovative programs? Or do
other innovations produce equally impressive or even better
results?

To answer the question, I compared results from
computer-based tutoring to results from other instructional
innovations (Table 4). The results in Table 4 come from
meta-analyses carried out at the University of Michigan
(Bangert et al., 1983; Cohen, Kulik, & Kulik, 1982;

C. Kulik, Kulik, & Bangert-Drowns, 1990; C. Kulik, Kulik, &
Shwalb, 1982; J. Kulik & Kulik, 1984). Listed are eight
instructional areas and the number of studies in each area.
Also given is the average unadjusted effect size for each
area. This is the average increase in examinations scores
that is produced by use of the innovation, where the
increase is measured in standard-deviation units.

Computer-based tutoring seems to be in the mid-range of
instructional effectiveness. Higher effect sizes are
associated with programs of accelerated instruction and
mastery learning. Smaller effects are associated with the
use of programmed texts and learning activity packages.

Computer tutoring programs produce effects that are




Table 4
Unadjusted Effect Sizes for Computer Tutoring

And Other Innovations

Number Unadjusted
Innovation of average

studies effect size
Accelerated classes 13 0.88
Mastery learning 17 0.46
Peer & cross-age tutoring 52 0.40
Computer tutoring 58 0.38
Classes for gifted 29 0.37
Grouping 80 0.13
Learning packages 47 0.10

Programmed instruction 47 0.07




equivalent in size to those produced by programs of
peer- and cross-age tutoring and by classes for gifted and
talented students.

There i; at least one major problem with these kinds of
comparison. They ignore certain factors that affect
evaluation results, including the types of examinations and
experimental designs used in the studies. Because the
average effect sizes listed in the table do not take into
account evaluation styles in the different areas, the effect
sizes given here are labeled unadjusted effect sizes.

A first important thing to notice about evaluation
studies is their source. Findings in dissertations are
almost always weaker than those reported in other sources,
e.g., journal articles, books, and ERIC reports (Table 5).
In our meta-analyses on precollege teaching, we did not find
a single exception to this rule. It is not certain which
set of findings--those from dissertations or those from
other sources--are the more trustworthy. On the one hand,
dissertation studies may h»e untrustworthy because they are
the work of amateurs, whereas studies found in journals are
more likely to be the work of professionals. On the other
hand, journal studies may be untrustworthy because they have
been carefully screened for statistical significance by
editorial gatekeepers. Whatever the reason for the
difference in dissertation and other results, it complicates

comparison of studies from different areas, because in some
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areas most studies are carried out by graduate students as
dissertation research, whereas in other areas most studies
are found in journals.

A second factor that seems to influence the outcomes of
evaluations at the precollege level is the type of
examination used as a criterion measure. Findings on
evaluator-designed local measures are usually clearer than
findings on standardized measures of school achievement
(Table 5). It may be that evaluator-designed measures are
unconsciously biased toward the experimental treatments, or
it may be that standardized tests are too global to use to
evaluate specific curricula. Whatever the case is, it seems
to me unfair to compare effects from different areas when
evaluation studies in some areas rely heavily on local tests
and evaluation studies in other areas rely largely on
standardized tests.

A third factor that affects the outcomes of precollege
studies is their duration. Short studies--where short is
defined as a duration of less than four weeks--often produce
stronger findings than do long studies (Table 5). Again, it
is hard to say which sort of study we should trust. Short
studies may be better controlled, but long studies are
certainly more ecologically valid. The problem is that
short studies are common in some evaluation areas and rare

in others,




Table 6
Adjusted Effect Sizes for Computer Tutoring

And Other Innovations

Number Adjusted
Innovation of average
studies effect size
Accelerated classes 13 0.93
Classes for gifted 29 0.50
Computer tutoring 58 0.48
Peer & cross-age tutoring 52 0.38
Grouping 80 0.19
Learning packages 47 0.19
Mastery learning 17 0.10

Programmed instruction 47 0.07




Table 6 also shows adjusted effect sizes for the-eight
areas. These are the average effect sizes that we would
expect if all the studies in each area were of the same
type. I used multiple regression techniques to make the
adjustments. The adjusted effect sizes are the best
estimates of effects for studies that (a) are reported in
journal articles or technical reports, (b) use standardized
tests as the criterion measures, and (c) are at least one
month in duration.

I think that these adjusted results are clearer than
the unadjusted results. The table suggests to me that
innovations that make the biggest difference involve
curricular change for high-achieving individuals. Schools
can dramatically improve the achievement of their high-
aptitude learners by giving them school programs that
provide greater challenge. The next most potent innovations
involve individual tutoring by computers or by other
students. At this point, computer tutoring seems to be
slightly more effective than peer- and cross-age tutoring.
Instructional technologies that rely on paper-and-pencil are
at the bottom of the scale of effectiveness.

Conclusions

Meta-analysts have demonstrated repeatedly that
programs of computer-based instruction usually have positive
effects on student learning. This conclusion has emerged
from too many separate meta-analyses to be considered

controversial. Nonetheless, results are not the same in




every study of computer-based instruction. No meta-aﬁalyst
has reported that all types of computer-based instruction
increase student achievement in all types of settings.
Study results are not that consistent, nor would we want
them to be. Computer-based instruction is a loose category
of innovations. It covers some practices that usually work
and other programs that have little to offer.

Breaking studies of computer-based instruction 'nto
conventional categories clarifies the evaluation results.
One kind of computer application that usually produces
positive results in elementary and high school classes is
computer tutoring. Students usually learn more in classes
that include computer tutoring. On the other hang,
precollege results are unimpressive for several other
computer applications: managing, simulations, enrichment,
and programming. Results of Logo evaluations are variable.
Logo evaluations that measure gains on individual tests
report highly positive results. Logo evaluations that
employ group tests report indifferent results.

The overall findings on computer tutoring compare
favorably with findings on other innovations. Few
innovations in precollege teaching have effects as large as
those of computer tutorials. Effects are especially large
and consistent in well-designed programs such as the
Stanford-CCC program. Programs of curiicular change that
provide more challenge for high-aptitude students may have

produced more dramatic effects in evaluation studies, but




such programs affect only a limited part of the school
population. The effects of computer tutoring are as great
as those of peer- and cross-age tutoring, and they are
clearly greater than the gains produced by instructional

technologies that rely on print materials.
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Abstract

The need for explanation capabilities in intelligent systems, and especially ex-
pert systems, has been widely recognized and most commercially available expert
system building tools provide at least rudimentary explanation capabilities. Yet,
few rigorous and thorough evaluations have been attempted. This is in part due to
the fact that an explanation system is not stand-alone, but occurs as a component
of a larger, intelligent system and the quality of a system’s explanations depends
on factors outside the control of the explanation component. Criteria and meth-
ods for evaluating explanation systems are only now beginning to emerge. In this
paper, I describe the goals of explanation systems and discuss three methods for
determining if those goals are being achieved: assessing the impact of the system
on the user’s satisfaction or performance, comparing human-machine explanation
interactions to human-human advisory interactions, and assessing a system accord-
ing to a set of evaluation criteria. The first two methods have been employed and
the results of case studies using these methods are discussed. The third method
relies on developing appropriate evaluation criteria and a set of recently proposed
criteria is presented. These criteria include metrics such as the cost of providing
a system with explanation capabilities and the benefits gained from making this
investment. Current research indicates that providing a system with explanation
capabilities requires substantially more effort during system development, but that
these costs are more than recovered during the software lifecycle because the kinds
of architectures that support explanation also facilitate knowledge acquisition and
system maintenance. New developments in explainable system architectures are
described.

1 Explanation Systems: Definition and Goals

As the name suggests, an explanation system is a system that presents its users with
explanatory information in response to user requests. An explanation system is not




stand-alone, but rather a component of a knowledge-based system such as an expert,
advice-giving, or intelligent tutoring system. The explanation component of such a sys-
tem is intended to elucidate the intelligent system’s domain knowledge and behavior by
producing explanations such as definitions of terms, justification of results, and compar-
isons of alternate methods for solving problems or achieving goals.

The critical need for explanation has been voiced by expert system builders and the
intended user community alike. In a study by Teach and Shortliffe (1984) in which
physicians were asked to rank 15 capabilities of computer-based consultation systems in
order of importance, they rated the ability “to explain their diagnostic and treatment
decisions to physician users” as the most essential of the capabilities surveyed. Third on
the list was the ability to “display an understanding of their own medical knowledge.”
The importance of explanation capabilities to these users is underscored by the fact
that the capability to “never make an incorrect diagnosis” was ranked 14th out of 15
capabilities surveyed! This suggests that explanation capabilities are not only desirable,
but crucial to the success of knowledge-based systems.

Researchers have designed explanation systems with a variety of goals in mind. For
end users, these goals include:

¢ information: Explanation systems offer access to the considerable knowledge
available in an intelligent system.

e education: Explanations can be used to educate users about the problem domain.

e acceptance: The advice of intelligent systems will not be accepted unless users
believe they can depend on the accuracy of that advice. Systems that can display
their domain knowledge and justify the methods used in reaching conclusions are
considered more acceptable to the user community [Teach and Shortliffe, 1984].

e assess appropriateness of system for task: The scope of intelligent systems
is typically narrow. Swartout (1983) has pointed out that an explanation facility
can help a user discover when a system is being pushed beyond the bounds of its
expertise by presenting the methods being employed and rationales for employing
them in a given situation.

In addition to the benefits offered to end-users of systems, an explanation facility can
also be useful for system developers. An additional goal of explanation system is to:

¢ aid in debugging and maintaining system: Because a textual or graphical
explanation of a system’s knowledge or behavior offers a viewpoint different from
the code that implements it, system developers find that such explanations can
aid in locating bugs and also offer a form of documentation that is helpful in
maintenance.




2 Difficulties in evaluating explanation systems

Research in the area of expert system explanation has led to the understanding that
explanation capabilities cannot be added to a system as an afterthought. The capability
to support explanation imposes stringent requirements on the design of an expert system
and it can be difficult, if not impossible, to endow a system with the capability to
produce adequate explanations unless those requirements are taken into consideration
when designing the system [Clancey, 1983b, Swartout, 1983]. Retrofitting an existing
intelligent system with explanation capabilities inevitably means redesigning it.

The range of user questions an explanation facility is able to handle and the so-
phistication of the responses it can produce depends on two knowledge sources: (1)
knowledge about the domain and how to solve problems in that domain as represented
in the intelligent system’s knowledge base, e.g., definitions of terminology, justifications
for actions; and (2) knowledge about how to construct an adequate response to a user’s
query in some communication medium, e.g., natural language and/or graphics. The
latter includes methods for interpreting the user’s questions and strategies for choosing
information relevant to include in answers to different types of questions.

In the expert systems area, researchers have determined that many of the inad-
equacies noted in the explanations stem from limitations in the systems’ knowledge
bases. Until recently, expert system architects have concentrated their efforts on the
problem-solving needs of systems. They designed knowledge bases and control mecha-
nisms best suited to performing an expert task. Because of this, the explanation ca-
pabilities of these systems were limited to producing procedural descriptions of how a
given problem is solved. Knowledge needed to justify the system’s actions, explain gen-
eral problem solving strategies, or define the terminology used by the system was simply
not represented and therefore could not be included in explanations [Clancey, 1983b,
Swartout, 1983). Deficiencies in the knowledge representation leads to other types of
inadequacies, rendering systems inflexible, insensitive, and unresponsive to users’ needs.
To provide different explanations to different users in different situations or in response to
requests for elaboration, the system must have a rich representation of its knowledge, in-
cluding abstract strategic knowledge as well as detailed knowledge, a rich terminological
base, and causal knowledge of the domain.

The fact that the explanation capabilities of a system are tightly coupled to the
knowledge base and reasoning component of that system leads to a fundamental problem
for those interested in the assessment of explanation systems. An explanation facility
cannot be evaluated on its own, it must be evaluated in the context of the larger intelligent
system of which it is a part. It would be unreasonable to fault the explanation facility
for its inability to respond to users’ requests for rule justifications, when the knowledge
need to justify rules in not present in the system’s knowledge base. Thus, evaluating an
explanation facility is a complex task. It inevitably involves assessing the entire intelligent
system, dissecting the system into components so that blame may fairly be assigned to
the offending component(s), and defining the types of knowledge needed to produce
explanations, all in order to gain an understanding of what limitations could stem from




the knowledge base and what limitations stem from the explanation component, itself.

In the sections that follow, I describe three methods that could be used to evaluate
explanation systems. The first two methods have been employed and I describe two spe-
cific cases in detail. As we will see, these case studies had the goal of identifying specific
problems with existing explanation systems and uncovering the limitations behind the
perceived inadequacies. Such studies led researchers to an understanding of the require-
ments that the need to provide explanations places on the knowledge representation and
reasoning processes of an intelligent system. In this paper, I describe the limitations
identified in the case studies as well as the general principles that came from in-depth
analyses of these limitations. Finally, I discuss current research efforts in explanation
technologies which are attempting to provide applications builders with an explainable
intelligent system framework by capturing the knowledge needed to support explanation
and structuring that knowledge so that it is available to the explanation facility. While
such frameworks are still exploratory, and the feasibility of providing domain-independent
reasoning and explanation facilities remains to be demonstrated, many promising results
are emerging from this work. One intriguing possibility from the perspective of evalua-
tion is that the requirements posed by an explainable intelligent system framework may
in fact suggest a way to evaluate whether a system can readily accept an explanation
module.

3 Methods For Evaluation

Given the nature of explanation systems and their tight coupling to other components of
intelligent systems, I believe there are three possible methods for assessing explanation
capabilities.

3.1 Assess impact on user

The purpose of an explanation component is to facilitate the user’s access to the in-
formation and knowledge stored in the intelligent system. Thus one way to assess an
explanation component, is to assess the impact of the explanation component on the
user’s behavior or satisfaction with the system. This can be done using direct methods
such as interviewing users to determine what aspects of the system they find useful and
where they find inadequacies, or by indirect methods which measure users’ performance
after using the system or monitor usage of various facilities.

Interviewing users. One of the best sources of assessment information is the user
population. If users feel that an explanation facility is meeting their needs, then we can
say that the explanation facility is successful. Experience indicates that users are more
likely to report frustrations and inadequacies with the system, but this is also useful
information. As is discussed in depth in Section 4, determining what limitations of
the system are responsible for the inadequacies identified by users points up areas where




systems must be improved and, in expert system explanation, has inspired research efforts
to alleviate the limitations.

Monitoring usage of explanation facility. Another telling assessment of an any
automated tool is whether or not users actually avail themselves of the tool and whether
or not their usage is successful, i.e., they are able to get the information they seek or are
able to make the system perform the task they desire. To my knowledge, a study of this
kind has not been done specifically in the area of explanation systems, but such studies
have been done in the area of help systems. For example, an empirical study of usage of
the Symbolics DOCUMENT EXAMINER, an on-line documentation system that supports
keyword searches, indicated that a substantial number of interactions with the system
ended in failure, especially when users were inexperienced [Young, 1987].

Impact on user’s performance on task. Another way to assess the contribution of
an explanation component is to determine how the explanation capabilities of the system
contribute to users’ effectiveness in using the system to achieve their goals. For example,
if the system is intended to instruct users about how to perform some task, then it should
be possible to design a simple experiment that assesses the explanation component. One
way to set up such an experiment would be to have two groups of users. One group
would use a version of the system with full explanation capabilities. The other group
would be given the system without explanation capabilities. Both groups’ performance
on the task would be measured before and after using the system. If the explanation
capabilities of the system are effective, we would expect the group which used the system
with explanation capabilities to show greater improvement in task performance, greater
retention of skills, or greater transfer of knowledge to related tasks.

3.2 Comparison to human-human advisory interactions

Fischer claims, that “human assistance, if available on a personal level, is in almost all
cases the most useful source of advice and help” [Fischer, 1987]. One reason he cites for
this is that most information and advice-giving systems require that users know what
they are looking for when they approach such a system. However, studies of naturally
occurring advisory interactions indicate that advice seekers often require assistance in
formulating a query [Pollack et al., 1982, Finin et al., 1986).

Thus, another way to assess explanation facilities is to compare them to the ideal
“explanation system”, i.e., a human explainer, and to determine what capabilities of
human-human explanatory interactions are present/absent from the system being evalu-
ated. In my own work on expert system explanation, I have performed such a comparison
which I discuss in detail in Section 5.

3.3 Evaluate system against set of criteria

A third approach for evaluating explanation systems would involve devising a set of
evaluation criteria and rating systems accordingly. This requires not only devising the
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IF: 1) the infection which requires therapy is meningitis,
2) only circumstantial evidence is available for this case,
3) the type of meningitis is bacterial,
4) the age of the patient is greater than 17 years old, and
5) the patient is an alcoholic,

THEN: there is evidence that the organisms which might be causing the
infection are diplococcus-pneumoniae (.3) or e.coli (.2)

Figure 1: A MYCIN Rule With Implicit Knowledge

set of evaluation metrics, but also devising techniques for measuring the system along
each dimension in an objective fashion. In Section 6, I discuss one set of evaluation criteria
that has recently been proposed. In that section, we will see that devising routines to
measure how a system fares against the criteria may not be an easy task, and for certain
of the criteria, the measurement may inevitably remain subjective.

In the next two sections, I describe case studies using the first two methods. A set of
evaluation criteria proposed for use with the third method is then discussed.

4 Method 1 - Evaluating MYCIN’s Explanation Fa-
cility

One of the first studies that attempted to evaluate an explanation facility was done in
the context of MYCIN, a rule-based medical consultation system designed to provide
advice regarding diagnosis and therapy for infectious diseases [Shortliffe, 1976]. The
rules encoding MYCIN’s medical knowledge are composed from a small set of primitive
functions that make up the rule language. Associated with each of the primitive functions
is a template to be used when generating explanations. The English translation of a
sample MYCIN rule is shown in Figure 1.

In MYCIN, a consultation is run by backward chaining through applicable rules, ask-
ing questions of the user when necessary. As a consultation progresses, MYCIN builds a
history tree reflecting the goal/subgoal structure of the executing program. Explanations
are produced from the history tree using the templates to translate the sequence of rules
that were applied to reach a conclusion.

To study MYCIN’s explanation facility, several scenarios in which MYCIN produced
inadequate responses to questions asked by users were analyzed in order to determine
the reasons for the suboptimal performance [Buchanan and Shortliffe, 1984). As a result
of this study, the implementors of MYCIN discovered several problems with the explana-
tion facility and were able to identify limitations in the system’s architecture that were




responsible for these problems.
The problems identified by the implementors were:

e MYCIN could not answer some types of questions that users of the system wished
to ask. Most notably, MYCIN could not produce justifications of the rules it used
in making a diagnosis, i.e., MYCIN could not answer questions of the form “Why
does the conclusion of a rule follow from its premises?”

e MYCIN could not deal with the context in which a question was asked - MYCIN
had no sense of dialogue, so each question required full specification of the points
of interest without reference to earlier exchanges.

e MYCIN often misinterpreted the user’s intent in asking a question. The study
identified examples of simple questions with four or five possible meanings depend-
ing on what the user knows, the information currently available about the patient
under consideration, or the content of the earlier discussions.

The first problem reflects the lack of sufficient knowledge to support explanation,
while the remaining two stem from the limitations of ad-hoc explanation techniques that
fail to handle the linguistic complexities of explanation generation.

4.1 Impoverished Knowledge Bases

In attempting to adapt MYCIN for use as a tutoring system, Clancey examined MYCIN’s
rule base and found that individual rules served different purposes, had different justi-
fications, and were constructed using different rationales for the ordering of clauses in
their premises [Clancey, 1983b]. However, these purposes, justifications and rationales
were not explicitly included in the rules; therefore many types of explanations simply
were not possible and thus user questions that required such explanations as responses,
could not be addressed. In particular, there were three important types of explanation
that MYCIN, and other early systems that generated explanations by translating their
code, could not produce.

Justifications. Early systems could not give justifications for their actions. These
systems could produce only procedural descriptions of what they did. They could not
tell the user why they did it or why they did things in the order that they did them.

For example, consider the rule shown in Figure 1 and suppose that the user wishes to
know why the five clauses in its premise suggest that the organism causing the infection
may be diplococcus or E. coli. MYCIN cannot explain this because the system knows no
more about the association between the premises and conclusion than what is stated in
this rule. In particular MYCIN does not know that clauses 1, 3, and 5 together embody
the causal knowledge that if an alcoholic has bacterial meningitis, it is likely to be caused
by diplococcus. Furthermore, MYCIN does not understand that clause 4 is a screening
clausc that prevents the systcm from asking whether the patient is an alcoholic when
the patient is not an adult - thus making it appear that MYCIN understands this social
“fact.” However, MYCIN does not explicitly represent, and therefore cannot explain,




this relationship between clauses 4 and 5. Even worse, not knowing that the system
makes this assumption may lead the user to infer that age has something to do with the
type of organism causing the infection.

Furthermore, the order in which rules are tried to satisfy a particular goal will affect
the order in which subgoals are pursued. When a goal such as determining the identity of
the organism is being pursued, MYCIN iavokes all of the rules concerning the identity of
the organism in the order in which they appear in the rule base. This order is determined
by the order in which the rules were entered into the system! Thus MYCIN cannot explain
why it considers one hypothesis before another in pursuing a goal. In addition, because
attempting to satisfy the premises of a rule frequently causes questions to be asked of the
user, MYCIN cannot explain why it asks questions in the order it does because this too
depends on the ordering of premises in a rule and the ordering of rules in the knowledge
base. As Clancey points out [Clancey, 1983b], “focusing on a hypothesis and choosing a
question to confirm a hypothesis are not arbitrary in human reasoning” and thus users
will expect the system to be able to explain why it pursues one hypothesis before another
and will expect questions to follow some explicable line of reasoning.

Explications of General Problem Solving Strategy. The knowledge needed to
explain general problem-solving strategies was not explicitly represented in early systems.
In MYCIN, because several different types of knowledge are confounded in the uniformity
of the rule representation, it is difficult to identify and explain MYCIN’s overall diagnostic
strategy.

Again, consider the rule shown in Figure 1. Another hidden relationship exists be-
tween clauses 1 and 3. Clearly bacterial meningitis is a type of meningitis, so why include
clause 1?7 The ordering of clauses 1 and 3 implicitly encodes strategic knowledge of the
consultation process. The justification for the order in which goals are pursued is im-
plicit in the ordering of the premises in a rule. The choice of ordering for the premises
is left to the discretion of the rule author and there is no mechanism for recording the
rationale for these choices. This makes it impossible for MYCIN to explain its general
problem-solving strategy, i.e., that it establishes that the infection is meningitis before
it determines if it is bacterial meningitis because it is following a refinement strategy of
diagnosing the disease [Hasling et al., 1984].

Definitions of Terminology. Terminological knowledge was also not explicitly
represented in MYCIN or other early systems. Users who are novices in the task domain
will need to ask questions about terminology to understand the system’s responses and to
be able to respond appropriately when answering the system’s questions. Furthermore,
experts may want to ask such questions to determine whether the system’s use of a term
is the same as their own. Because the knowledge of what a term means is implicit in
the way it is used, the system is not capable of explaining the meaning of a term in a
way that is acceptable to users. An effort to explain terms by examining the rule base
of an expert system [Rubinoff, 1985) has been only partially successful because so many
different types of knowledge are encoded into the single, uniform rule formalism. This
makes it difficult to distinguish definitional knowledge from other types of knowledge.




4.1.1 Summary

As we have seen, rules and rule clauses incorporate many different types of knowledge,
but the uniformity of the rule representation obscures their various functions thus making
comprehensible explanation impossible. Much of the information that goes into writing
the rules or program code that make up an expert system including justification, strategic
information, and knowledge of terminology is either lost completely or made implicit to
the extent that is no longer available to be explained. Both Swartout (1983) and Clancey
(1983) have argued that the different types of knowledge (definitional, world facts, causal,
strategic) must be separately and explicitly represented if systems are to be able to
explain their strategy and justify their conclusions. As a consequence, later efforts have
addressed the problem of capturing the knowledge and decisions that went into writing
the program and explicitly representing this information so that it will be available for
explanation. This research is briefly discussed in Section 7. For a more detailed discussion
of knowledge representation issues and a description of the Explainable Expert Systems
approach, see [Swartout and Smoliar, 1987b, Swartout and Smoliar, 1987a).

4.2 Inadequate Natural Language Techniques

The other problems identified by the MYCIN implementors in their analysis of inade-
quate responses stem from limitations in the natural language capabilities of MYCIN.
Specifically, question understanding and interpretation procedures are limited, thus re-
stricting the kinds of questions that may be asked and the manner in which they must be
phrased. To avoid the difficult problems of inferring the user’s intent in asking a question,
MYCIN interprets a user’s “Why?” query in only one way, even though it could have a
variety of meanings, such as “Why is it important to determine....?,” “Why did you ask
about that instead of....7,” “Why do you ask that now?,” or “Why does the conclusion
follow from the premises?” All of these interpretations are valid questions about the
system’s knowledge and behavior, yet MYCIN always assumes the first interpretation
and does not allow the other questions to be asked.

For example, consider the explanation produced by MYCIN in Figure 2. When the
user asks “Why?” the second time, the system assumes that the user is asking “Why is
it timportant to determine the category of ORGANISM-19”. But, the user may really be
asking a very different type of question, namely “Why is it the case that a gram negative,
facultative rod acquired in a hospital setting is likely to be pseudomonas?”! We have
already seen that the causal knowledge needed to answer this question is not represented
in MYCIN. But even if it were, MYCIN could not determine what “why?” question was
being asked in a given context because MYCIN does not view the explanation session as
an on-going dialogue. Each question-answer pair is viewed independently and references
to previous portions of the dialogue can be made only in stilted and artificial ways. A
mode] of explanation that addresses this problem is described in Section 5.3.

1This example is adapted from an example found in [Davis, 1976)].




Was the infection with ORGANISM-1 acquired while the patient was
hospitalized?

SEWHY?

[i.e., WHY is it important to determine whether or not the infection with
ORGANISM-1 was acquired while the patient was hospitalized?]
[1.0] This will help to determine the identity of ORGANISM-1.
It has already been established that
[1.1] the gram stain of ORGANISM-1 is gramneg, and
[1.2) the morphology of ORGANISM-1 is rod, and
[1.3] the aerobicity of ORGANISM-1 is facultative
Therefore, if
[1.4] the infection with ORGANISM-1 was acquired while the
patient was hospitalized
Then
there is weakly suggestive evidence (.2) that the identity
of the organism is pseudomonas
[RULE050].

$*WHY?
[i.e., WHY is it important to determine the identity of ORGANISM-1?

Figure 2: A Sample MYCIN Explanation

4.2.1 Summary

The experience with the MYCIN study shows that asking users to indicate unsatisfactory
explanation behavior is a very useful method for evaluation. This study pointed out
several scenarios where MY CIN’s explanation facility did not behave as users expected or
could not give an explanation they desired. Analyzing these scenarios enabled MYCIN’s
implementors and other researchers to discover the architectural limitations that were
responsible for the inadequacies and spurred research aimed at improving the problems.

5 Method 2 - Comparison to human-human inter-
actions

My own work in expert system explanation was motivated by an observation of a great
disparity between what analyses of naturally occurring advisory dialogues reveal, on the
one hand, and the explanation facilities that current systems provide and the assumptions
they make about how users interact with experts, on the other. Most systems make
the tacit assumption that the explanations they produce will be understood by their
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users. However, in human-human advisory situations, people almost always ask follow-up
questions! Expert and advice-giving systems are expected to provide solutions and advice
to users faced with real problems in complex domains. They often produce complex multi-
sentential responses, such as definitions of terms, justification of results, and comparisons
of alternate methods for solving problems. Users must be able to ask follow-up questions
if they do not understand an explanation or want further elaboration. Answers to such
questions must take into account the dialogue context.

5.1 What the data reveals

In a study of a “naturally occurring” expert system, Pollack et al. (1982) found that user-
expert dialogues are best viewed as a negotiation process in which the user and expert
negotiate the statement of the problem to be solved in addition to a solution that the
user can understand and accept. In my own work on explanation, I examined samples
of naturally occurring dialogues from several different sources: tape-recordings of office-
hour interactions between first year computer science students and teaching assistants,
protocols of programmers interacting with a mock program enhancement advisor, and
transcripts of electronic dialogues between system users and operators taken from [Robin-
son, 1984]. A portion of a dialogue extracted from the transcripts I collected appears
below:

TEACHER OK, so what is it, it’s using stacks, right?

STUDENT Yea, well, cause, um, aren’t we supposed to use linked lists?
TEACHER You don’t have to use linked lists. You don’t.

STUDENT But OK. You said stacks, right?

TEACHER In LISP we implemented stacks as linked lists. In C we can implement
stacks as an array.

STUDENT Wait, in LISP...

TEACHER In LISP, we implemented, past tense, implemented stacks as linked lists.
Right? In C, we can do it anyway we want. We can implement it as
linked lists or as arrays, uh, I don’t know any obvious data structures after
that. But, um, you can use a linked list or an array. I would use an array,
personally.

In this dialogue, the student does not understand the difference between the general
concept of a stack as a way of managing data and its implementation using a particular
data structure. The teacher thinks she has cleared up the student’s misunderstanding
with her first explanation, but in fact she has not, as indicated by the student’s “Wait”
and hesitation. The teacher enhances her earlier response by emphasizing the point she
made in the previous explanation, and then elaborating on the notion that a stack can
be implemented using various data structures. Similarly, automated systems must be
able to offer further elaborations of their responses or alternate explanations, even when
the user is not very explicit about which aspect of the explanation was not clear.
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An analysis of dialogues such as this one led to the following observations:

o Users frequently do not fully understand the ezpert’s response. Users rarely stated
a problem, received a result or explanation, and then left, satisfied that they un-
derstood and accepted the expert’s explanation. The expert frequently found the
need to define terms or establish background information in response to feedback
that the listener did not completely understand the response.

o Users frequently ask follow-up questions. Users frequently requested clarification,
elaboration, or re-explanation of the expert’s response.

e Users often don’t know what they don’t understand. Users frequently could not
formulate a clear follow-up question. In many cases, the follow-up question was
vaguely articulated in the form of mumbling, hesitation, repeating the last few
words of the expert’s response, or simply stating “I don’t understand.” Often
the expert did not have much to go on, but still was required to provide further
information.

o Ezperts do not have a detailed model of the user. From the dialogues I examined,
it is clear that experts do not have a complete and correct model of their users.
While we can safely assume that experts have some model of the users, it seems
that since many and varied users are likely to seek their help, this model is more
likely to be a stereotypic model that may be incomplete or incorrect for any given
hearer than a detailed model of any individual. Yet, as the dialogues show, the
user and the expert are able to communicate effectively.

5.2 The State of Conventional Explanation Systems

Studies such as these and many others [Finin et al., 1986, Suchman, 1987, Cawsey,
1989] show that explanation requires dialogue, yet few intelligent systems participate in
a dialogue with their users. The explanation facilities of most current systems can be
characterized as:

e unnatural: explanation generation does not employ linguistic knowledge about
how texts should be constructed. The unnatural structure of the resulting texts
often obscures the important points in an explanation.

¢ inextensible: new explanation strategies cannot be added easily.

e unresponsive: the system cannot answer foliow-up questions or offer an alterna-
tive explanation if a user does not understand a given explanation.

¢ insensitive: explanations do not take the context into account. Each question and
answer pair is treated independently.

¢ inflexible: explanations can be presented in only one way.
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Generally, these problems stem from the fact that explanation generation has not
been considered as a problem requiring its own expertise and worthy of an architecture
that supports a sophisticated problem-solving activity. More specifically, these problems
stem from limitations in several areas as outlined below.

Many expert systems produce explanations from a trace of the expert system’s line
of reasoning. Much effort has gone into identifying clever strategies for annotating,
pruning, traversing, and translating the execution trace to produce ‘good’ explanations
(e.g., [Weiner, 1980]). However, there are several problems with this approach. First,
it places much of the burden of producing explanations on expert system builders and
their ability to structure the rules or program code in a way that will be understandable
to users who are knowledgeable about the task domain. For example, in MYCIN, an
attempt was made to make each rule an independent “chunk” of medical knowledge re-
flecting a complete, coherent explanation. In addition, as other researchers ({Davis, 1976,
Webber and Joshi, 1982, Swartout, 1983, Clancey, 1983b, Pavlin and Corkill, 1984]) have
noted, the computationally efficient reasoning strategies used by expert systems to pro-
duce a result often do not form a good basis for understandable explanations. Experience
has shown that explanations produced by paraphrasing the system’s execution trace cor-
respond too literally to the program structure, which is dictated, at least in part, by
implementation considerations which may obscure the underlying domain-related rea-
soning. Moreover, there is no reason to assume that a simple paraphrase of the pro-
gram’s execution will produce an explanation that conforms to the linguistic conventions
dictating discourse structure and coherence.

Consider the explanation in Figure 3 which was produced by NEOMYCIN. As will
be discussed further in Section 7.1, NEOMYCIN [Clancey and Letsinger, 1981] was de-
veloped as part of an effort to build an intelligent tutoring system to instruct medical
students in diagnosis. For this purpose, it was necessary for the system to be able ex-
plain its overall diagnostic strategy. Recall that MYCIN could not answer questions
of this type because of limitations in its knowledge base. In NEOMYCIN domain-
independent problem-solving knowledge is represented explicitly and separately from
knowledge about the domain. Because its explanations are based on a more explicit rep-
resentation, NEOMYCIN is able to produce explanations of its problem-solving strategies
that are a significant improvement over those of MYCIN. For example, NEOMYCIN is
able to give abstract explanations of its general problem-solving strategy, see [Hasling
et al., 1984] for details. However, the explanation in Figure 3 demonstrates that, even
with the improved knowledge base of NEOMYCIN, simply paraphrasing the system’s
reasoning often produces text that is unsuitable for users. The problem with this expla-
nation is that its structure corresponds too literally to the structure of the method for
achieving the task, i.e., applying one rule after another. While the explanation repeats
that it “gave thorough consideration to any recent findings” four times, the explanation
does not make clear the overall strategy of applying rules that strongly contribute to
the current hypothesis (e.g., causal precursors) before applying rules that are weaker
indicators (e.g., general evidence). What is needed is a more sophisticated explanation
strategy that could recognize the similarity in the four rule applications and structure
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**HOW 19.0?
[i.e. How are we trying to decide whether Mary has tuberculosis?
We did the following:

[20.1] Applied a rule mentioning a causal precursor to
tuberculosis (tb risk factor; rule525), and
[20.2] Gave thorough consideration to any recent findings.

[20.3] Applied a rule mentioning general evidence for
tuberculosis (focal neurological signs; rule366), and
[20.4) Gave thorough consideration to any recent findings.

[20.5) Applied a rule mentioning general evidence for
tuberculosis (compromised host; rule309), and
[20.6] Gave thorough consideration to any recent findings.

We are now:

[20.7] Applying a rule mentioning general evidence for
tuberculosis (a history of granulomas on biopsy of the liver,
lymph node, or other organ; rule002).

We will next:
[20.8] Give thorough consideration to any recent findings.

[back to question 14 ....]

Figure 3: A Sample NEOMYCIN Explanation

this information accordingly. This example is symptomatic of the more general problem
that simply paraphrasing the system’s knowledge base or reasoning trace is not guar-
anteed to produce understandable explanations, regardless of how well that knowledge
base is structured. In order to produce natural language explanations that are coherent
to human users, an explanation facility must have linguistic knowledge about discourse
structure and strategies for employing that knowledge to achieve its explanatory goals.
Another problem is that the explanation components of conventional expert systems
are difficult to extend. Because explanaticn is typically implemented in ad-hoc proce-
dures or large collections of rules, it is difficult to understand how adding new rules
or procedures will interact with existing facilities. In general, answering a new type of
question involves coding new procedures or building new templates from scratch. Lit-
tle, if any, of the existing code is useful. Moreover, expert systems are becoming more
complex as system builders augment their knowledge bases to include the underlying sup-
port knowledge needed to allow systems to answer a broader range of questions about
their domain knowledge and behavior. The knowledge bases of newer expert systems
separate different types of knowledge [Clancey and Letsinger, 1981, Neches et al., 1985,
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Swartout and Smoliar, 1987b) and represent knowledge at various levels of abstraction
[Patil, 1981}, and thus confront explanation generators with an array of choices about
what information to include in an explanation and how to present that information which
were unavailable in the simple knowledge bases of earlier systems. Meeting the challenge
posed by these richer knowledge bases will require more sophisticated and linguistically
motivated explanation generators. '

Researchers in computational linguistics have addressed the issues of selecting infor-
mation from a complex knowledge base and organizing it into a text that adheres to
the conventions of discourse structure (cf. [Weiner, 1980, McKeown, 1982, Appelt, 1981,
McCoy, 1985, Reichman, 1981). Results from this research have been successfully in-
corporated into recent explanation systems [Cawsey, 1989, McKeown, 1988, Moore and
Swartout, 1989, Paris, 1990, Wolz, 1990] to enable these systems to produce natural
explanations.

However, few systems are capable of responding to follow-up questions. The prob-
lem is that most intelligent systems that respond to user’s questions view generating
responses as a one-shot process. That is, they assume that they will be able to produce
an explanation that the user will find satisfactory in a single response. This one-shot
approach is inconsistent with analyses of naturally occurring advisory dialogues. More-
over, if a system has only one opportunity to produce a text that achieves the speaker’s
goals without over- or under-informing, boring or confusing the listener, then that sys-
tem must have an enormous amount of detailed knowledge about the listener. Taking the
one-shot approach has led to a view that improvements in explanation will follow from
improvements in the user model. Recognizing this need, researchers have studied how
to build user models (e.g., [Kass and Finin, 1988, Rich, 1989, Chin, 1989, Kobsa, 1990,
Kobsa, 1989]) and how to exploit them to produce the ‘best’ possible answer in one
shot. Conqsiderable effort has been expended on building complex user models, contain-
ing large amounts of detailed information about a user, including the user’s goals and
plans, attitudes, capabilities, preferences, level of expertise, beliefs, beliefs about the
system’s beliefs (and other such mutual beliefs). From these models, a system then at-
tempts to generate the ‘best possible’ answer for that particular user. Already, systems
employing such models have demonstrated that a user model can be used to guide a gen-
eration system in producing answers that appear to be appropriately tailored to the user
(e.g., [Appelt, 1985, Kass and Finin, 1988, McCoy, 1985, Paris, 1988, van Beek, 1986,
Wolz, 1990}).

While the quality of explanations can be demonstrably improved by employing a user
model, a system that is critically dependent on such a model will not suffice. Sparck Jones
(1984) questions whether it is even feasible to build complete and correct user models.
To date, no robust system for automatically acquiring these complex and detailed user
models exists, and hand-crafting them is time-consuming and error-prone. The com-
pleteness and accuracy of a user model cannot be guaranteed. Thus, unless mechanisms
are developed by which systems can dynamically acquire and update a user model by
interacting with the user, the impracticality of building user models will prevent much of
the work on tailoring from being successfully applied in real systems. Some researchers
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have begun to develop tools to aid systems in acquiring user models. For example, Kass’
General User Modeling Acquisition Component (GUMAC) [Kass, 1988] provides a set of
domain-independent acquisition rules that allows a system to acquire a model of the user
by drawing inferences from the user’s utterances during a dialogue with an expert sys-
tem. Although such tools show promise, systems that rely on correct and complete user
models are likely to be brittle. Indeed, most of Kass’ acquisition rules require that the
user and system be able to carry on an initial dialogue (for example, to gather data or
establish the problem to be solved) during which the user model is being acquired. Thus
the system must be able to carry on a dialogue with the user in order to acquire the user
model. Clearly the system must be able to communicate without a complete and correct
model if Kass’ system is to be feasible.

More importantly, by focusing on user models, researchers have ignored the rich source
of guidance that people use in producing explanations, namely feedback from the listener
[Ringle and Bruce, 1981].

5.3 What is needed in a dialogue system

In my own work, I have developed a model of explanation in which feedback from the
user is an integral part of the explanation process. In designing this model, I identified
the capabilities that a system must possess in order to participate in a dialogue. They
are as follows.

Accept feedback from the user. To be responsive to a user’s feedback, a system
must allow the user to provide that feedback. Many systems do not have a means for
allowing the user to indicate dissatisfaction with a given explanation. The user who
cannot ask one of a prescribed set of follow-up questions in a prescribed form, is without
recourse.

The system must understand its own explanations. In order to provide elab-
orating explanations, clarify misunderstood explanations and respond to follow-up ques-
tions in context, a system must view the explanations it produces as objects to be rea-
soned about later. In particular, detailed knowledge about how the explanation was
“designed” must be recorded, including: the goal structure of the explanation, the roles
individual clauses in the text play in responding to the user’s query, how the clauses
relate to one another rhetorically, and what assumptions about the listener’s knowledge
may have been made. Without this knowledge, a system cannot be sensitive to dialogue
context or responsive to the user’s needs.

Interpret questions taking previous explanations into account. When par-
ticipating in a dialogue, a system must realize that the same question can mean different
things in different contexts, i.e., the system must be able to interpret questions taking
into account what the user knows, the information available about the current problem-
solving situation, or the content of the previous discussion.

Have multiple strategies for answering a question of a given type. Finally,
making oneself understood often requires the ability to present the same information
in multiple ways or to provide different information to illustrate the same point. Cur-
rent systems are inflexible because they typically have only a single response strategy
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associated with each question type, instead of the sophisticated repertoire of discourse
strategies that human explainers utilize. Without multiple strategies for responding to
a question, a system cannot offer an alternative response even if it understands why a
previous explanation was not satisfactory.

Based on these requirements, I devised a model for explanation intended to alleviate
the limitations described above. The model captures the explainer’s reasoning about the
design of an explanation and utilizes this knowledge to effectively support dialogue. The
main features of this model are:

e explanation knowledge is represented explicitly and separately from domain knowl-
edge in a set of strategies that can be used to achieve the system’s discourse goals

e the system has many and varied strategies for achieving a given discourse goal

e utterances are planned in such a way that their intentional and rhetorical structure
is explicit and can be reasoned about

e the system keeps track of conversational context by remembering not only what
the user asks, but also the planning process that led to an explanation

e information in the user model is utilized when it is available, but the system is
able to operate effectively even when no pertinent information appears in the user
model or when the user model is incorrect

This model has been implemented in an explanation generation facility for the Ex-
plainable Expert Systems (EES) framework [Neches et al., 1985, Swartout and Smoliar,
1987b), a domain-independent shell for creating expert system applications. When an
expert system is built in EES, an extensive development history is created that records
the domain goal structure and design decisions behind the expert system. This structure,
as well as the system’s static knowledge base, and the execution trace produced when the
system is used to solve a particular problem, are all available for use by the explanation
facility.

A detailed description of the implementation of the explanation facility is beyond
the scope of this paper, but may be found in [Moore and Swartout, 1989, Moore, 1989).
Briefly, the explainer works in the following way. When the system needs to communicate
with the user, a discourse goal (e.g., make the hearer know a certain concept, persuade
the hearer to perform an action) representing an abstract specification of the response
to be produced is posted. The system then uses its explanation strategies to plan an
explanation to achieve the goal. When planning is complete, the system presents the
explanation to the user, recording the text plan that produced it in a dialogue history.
The text plan captures the “design” of an explanation, indicating what the system was
trying to explain, how it explained it, and what alternative ways could have been used
to explain the same thing. The dialogue history is a record of the conversation that has
occurred thus far and includes the user’s utterances as well as the text plans that lead
to the system’s responses. The text plans recorded in the dialogue history are used to
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SYSTEM What characteristics of the program would you like to enhance? 1]
USER Maintainability. {2)
SYSTEM You should replace (SETQ X 1) with (SETF X 1). [3]
USER Why? [4)
SYSTEM I’'m trying to enhance the maintainability of the program by apply- (5]
ing transformations that enhance maintainability. SETQ-to-SETF is a
transformation that enhances maintainability.
USER Why? [6]
SYSTEM Transformations that enhance maintainability are defined as trans- 7
formations whose right-hand-side’s use is more general than its
left-hand-side’s use. SETF can be used to assign a value to any
generalized-variable. SETQ can only be used to assign a value to
a simple-variable.
USER What is a generalized-variable? (8]
SYSTEM Simple-variables are storage locations named by symbols. This con- [9]
cept can be generalized to a storage location that can be named by
any access function. These storage locations are called generalized-
variables.
USER Huh? (10]
SYSTEM For example, the car and cdr of a cons are generalized-variables, (11]
named by the access functions CAR and CDR. Other examples are an
element of an array or a component of a structure.
USER OK. [12)

Figure 4: Sample Dialogue

provide the conversational context necessary to handle follow-up questions and recover
when feedback from the user indicates that the system’s explanation is not satisfactory.

We have found that the text plans that produced previous explantions are indispens-
able in determining how to interpret the hearer’s feedback. Figure 4 shows a sample
dialogue with the Program Enhancement Advisor (PEA), a prototype expert system im-
plemented within the EES framework in order to test our explanation facility. PEA is an
advice-giving system intended to aid users in improving their Common LISP programs by
recommending transformations that enhance the user’s code. This dialogue demonstrates
that our system is able to participate in an on-going dialogue with the user.

First, the two why-questions appearing on lines [4] and [6] are interpreted differently
because they appear in two different contexts. The first why-question occurs after the
system has recommended that the hearer perform an action (line [3]). The system inter-
prets this question as a request from the uger to be persuaded that he should perform
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this action. One of the strategies the system has for persuading hearers to perform ac-
tions is to state the shared goal (in this case enhance maintainability) that led to its
recommending the action, to state the method being applied to achieve this goal (apply
transformations that enhance maintainability), and finally to state how the rec-
ommended act is involved in achieving the goal. This strategy leads to the system’s
response on line [5]. When the user asks “Why?” again after this response (line [6]),
it is interpreted as a request for the system to justify the last statement it made in its
explanation, leading to the interpretation “Why is SETQ-to-SETF is a transformation
that enhances maintainability?”

Another important aspect of this dialogue is that our system allows the user to ask
the vaguely articulated question “Huh?” on line [10]. In order to answer the user’s why-
question on line [6], the system must explain why SETQ-to-SETF is a transformation that
enhances maintainability. In doing so, the system uses the term generalized variable,
which is apparently unfamiliar to the user as evidenced by the follow-up question “What
is a generalized variable?” on line [8]. In answering this question, the system uses one
of its many strategies for describing a concept. In particular, it uses a strategy which
reminds the user of a familiar concept (simple variable) and which is a specialization
of the concept being explained (generalized variable). The system then abstracts
from the known concept to the new concept, focusing on the aspects (in this case, use)
of the more specific concept that are being generalized to form the more general concept
which it then names. This is a very general strategy for describing a concept that can be
applied whenever the user is familiar with a specialization of the concept to be described.
In this case, the user does not understand this explanation, but cannot ask a pointed
question elucidating exactly what is not understood. In our system, one of the options
available to the user is to simply ask “Huh?”, indicating that the previous explanation
was not understood. The system “recovers” from this type of “failure” by finding another
strategy for achieving the failed goal. In this case, the failed goal is to describe a concept,
and the system recovers by giving examples of this concept, line [11].

A more detailed discussion of how this dialogue is produced may be found in [Moore,
1989]. We have also demonstrated that the text plans recorded in the dialogue history
can be used to select the perspective from which to describe or compare objects [Moore,
1989], as well as to avoid repeating information that has already been communicated
[Moore and Paris, 1989). In [Moore and Swartout, 1990], we show how the information
in text plans allows the system to provide an intelligent hypertext-style interface in which
users highlight the portion of the system’s explanation they would like clarified, and the
system produces a context-sensitive menu of follow-up questions that may be asked at
the current point in the dialogue.

5.4 Discussion

As was the case with Method 1, comparing the behavior of an explanation system to that
of human explainers has proven useful. Characterizing the differences and understanding
the reasons for the disparities allows us to identify specific aspects of explanation systems
that must be improved.
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One issue that must be addressed when using this method for assessing explanation
systems is how far to carry the analogy between human-human interactions and human-
machine interactions. Certainly there are differences between the capabilities of humans
and machines and we should not blithely assume that human-computer interaction must
mimic human-human interaction in all aspects. Rather, we must make reasoned decisions
about what aspects of human-human interaction we wish to preserve in human-machine
interaction, what differences can be tolerated, and in what ways human-computer inter-
action can improve upon human-human interaction.

In some cases, intelligent systems may offer benefits beyond the scope of human ex-
plainers. For example, one way in which expert systems differ from human experts is
that, if built according to certain principles, expert systems have access to their problem-
solving strategies and can accurately report exactly what methods were used to solve
a problem and why these methods were chosen (see for example [Neches et al., 1985,
Swartout and Smoliar, 1987b]). Human experts on the other hand, do not have access
to the actual methods which they employ in reasoning. They can, however, construct
a justification for why a solution is correct or reconstruct a plausible chain of reasoning
based on their rich model of the domain. Within the expert system explanation com-
munity, there is currently a debate about how closely the “line of explanation” must
follow the system’s “line of reasoning”. Wick and Thompson (1989) argue that an ef-
fective explanation need not be based on the actual reasoning processes that the system
used in solving the problem, but rather, the system’s results may be supported by other
sources of information about the domain. However, as we will see in Section 6, Swartout
argues that such an approach is at odds with one of the desired attributes for expert
system explanation, namely fidelity, which requires that the explanation be an accurate
representation of what the expert system really does. Regardless of how this issue is
resolved, the fact that expert systems may have access to their line of reasoning affords
an opportunity not available to human experts.

The hypertext-style pointing interface we designed for our explanation facility pro-
vides another example of the way in which human-computer interaction may usefully
differ from human-human interaction. We designed this interface to provide users with a
convenient way to ask questions about previously given explanations. In hurhan-human
interactions, people can ask questions that refer to previous explanations with utter-
ances such as “I didn’t understand that part about applying transformations that enhance
maintainability?” But such questions pose a difficult challenge for natural language un-
derstanding because such questions often intermix meta-level references to the discourse
with object-level references to the domain. Our hypertext-like interface allows users
to point to the portion of the system’s explanation that they would like clarified. By
allowing users to point, many of the difficult referential problems in natural language
analysis can be avoided. Implementing this interface was possible in our explanation
facility precisely because our system understands its own explanations and thus is able
to understand what the user is pointing at. The system then offers the user a menu
of follow-up questions that it knows how to answer and that make sense in the current
context. While this interface differs from what occurs in human-human interaction, it
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provides a pragmatic solution to the problem of allowing users to ask questions about
previous explanations. It may even be the case that when interacting with a computer,
users prefer to highlight the text they would like to ask about and to receive a menu of
possible questions, rather than attempting to formulate a natural language question. We
plan to test this hypothesis in future work.

6 Method 3 — Criteria for Evaluating Explanation
Systems

The third method for assessing explanation systems is to devise a set of criteria
for evaluation and to rate systems according to these criteria. Recently, Swartout has
attempted to codify a set of desiderata for explanation facilities [Swartout, 1990). He has
suggested that these requirements can be used as metrics for evaluating the performance
of explanation systems and progress in the field. The desiderata, shown in Figure 5, fall
into three classes. The first places constraints on the mechanism by which explanations
are produced. The second and third specify requirements on the explanations themselves.
The fourth and fifth are concerned with the effects of an explanation facility on the
construction and execution of the expert system of which it is a component.

Swartout has gone on to describe the implications of some of these criteria. For exam-
ple, the need for fidelity has several implications. First, the explanations must be based
on the same underlying knowledge that the system uses for problem solving. Thus sys-
tems that produce explanations using canned text or ‘fill-in-the-blank’ templates would
receive a poor rating because there can be no guarantee that explanations produced by
these systems are consistent with the program’s behavior. Another implication of the
fidelity criterion is that the expert system’s inference engine should be as simple as pos-
sible with a minimal number of special features built into the interpreter. Such features
are not part of the explicit knowledge base of the system, and are either not explained at
all or are explained by special-purpose routines built into the explanation facility. This
introduces the potential for inaccuracy because changes made to the interpreter require
that changes be made independently to the explanation routines. For example, the cer-
tainty factor mechanism that manages MYCIN’s reasoning about uncertainty cannot be
explained because it is built into MYCIN’s interpreter.

The efficiency metric has important implications as well. It would rate a system
that provided good justifications of its actions as poor if that system did so by always
reasoning from first principles. Such a system would be re-deriving its expertise on each
run and would be very inefficient.

6.1 Discussion

The criteria proposed by Swartout are very comprehensive and are quite useful as quali-
tative guidelines. However, it would be desirable to form evaluation metrics from these
criteria with objective methods for assigning ratings to an explanation system. In some
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1. Fidelity. Explanations must be an accurate representation of what the expert system
really does.

2. Understandability. Explanations must be understood by users. Understandability is
not a single factor, but is made up of several factors, including:

Terminology. The terms used in explanations must be familiar to the user or the
system must have the capability to define them.

Abstraction. The system must be able to give explanations at different levels
of abstraction of terminology. For example, in describing a patient’s problem, the
system should be able to use the abstract term bacterial infection, or the more
specific term E. coli infection.

Summarization. The system must be able to provide descriptions at different
levels of detail.

Viewpoints. The system must be able to present explanations from different points
of view that take into account the user’s interests and goals

Linguistic Competence. The system should produce explanations which sound
“natural”.

Coherence. Taken as a whole, the explanations should form a coherent set. Ex-
planations should take into account previous explanations.

Composability. When several things must be conveyed in a single explanation,
there should be smooth transitions between topics.

Correct Misunderstandings. The system must allow the user to indicate that
an explanation is unsatisfactory and be capable of providing further clarification.

3. Sufficiency. Enough knowledge must be represented in the system to support production
of the kinds of explanations that are needed. The system must be able to handle the
types of questions that users wish to ask.

4. Low Construction Overhead. Providing explanation should impose light load on
expert system construction, or any load that is imposed should be recovered by easing
some aspect of the expert system lifecycle (e.g., maintenance or evolution).

5. Efficiency. The explanation facility should not degrade the runtime efficiency of the
expert system.

Figure 5: Swartout’s Desiderata for Explanation Systems
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cases, the task of devising a method for assigning a value to the metric seems straight-
forward. For example, fidelity can be assessed by comparing traces of the system’s
problem-solving with the natural language explanations it produces. Techniques from
software engineering could be helpful in estimating the overhead in system construction
due to the explanation facility and how much savings in the maintenance and evolution
cycles are due to design decisions attributable to the requirements imposed by expla-
nation. Cases in which systems have been re-engineered to provide better explanation
capabilities also offer opportunities for evaluation. For example, since NEOMYCIN was
developed to address certain of the limitations in MYCIN’s explanation capabilities, we
can get an estimate of runtime efficiency by comparing NEOMYCIN to MYCIN solving
the same diagnostic problem. Moreover, the experiences of knowledge engineers working
on both systems should give insight into whether the restructuring of the knowledge base
for NEOMYCIN aids in maintenance or evolution.

Some aspects of understandability could also be objectively measured. For example,
one way to evaluate the factor of composability (smoothness between topic transitions in
a single explanation) would be to analyze the system’s explanations to determine whether
they adhere to constraints governing how focus of attention shifts, as defined by Sidner
(1979) and extended by McKeown (1982).

In other cases, it is difficult to envisage how objective measures for assessment could
be devised. For example, how can we assign a value to an explanation’s naturalness (lin-
guistic competence) and coherence? The ratings of such factors are inevitably subjective
and can only be judged by human users. Furthermore, what is understandable to one
user may be obscure to others. The most promising way to assess the understandability
of a system’s explanation will involve techniques such as those included in the discussion
of Method 1, i.e., assessing the users’ satisfaction with the explanations or the impact of
the explanations on users’ performance.

The criteria proposed by Swartout provide a good starting point for devising metrics
for assessment, but clearly much more work needs to be done. In the next section, I
discuss two examples of improved architectures for explanation.

7 Explainable Architectures for Expert Systems

The insights gained from analyses of the inadequacies of early expert systems led re-
searchers to attempt to design architectures for expert systems that would improve their
explanation capabilities. In designing new architectures, researchers had the goals of
capturing the knowledge needed to support the types of explanation users desire, and to
structure that knowledge appropriately. Here I briefly discuss two such systems.

7.1 NEOMYCIN

NEOMYCIN [Clancey and Letsinger, 1981] was developed in order to teach medical
students about diagnosis, and for this purpose it was necessary to be able to justify the
diagnostic associations encoded in MYCIN’s rules and to explicate the overall diagnostic
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strategy of gathering information and focusing on hypotheses. Recall that MYCIN could
not answer questions of these types due to limitations in its knowledge base. NEOMY CIN
was designed with the goal of capturing control knowledge more explicitly so that it could
be explained and re-used. Clancey has argued that NEOMYCIN’s metarules constitute
a domain-independent diagnostic strategy that could be applied to related problems in
other domains [Clancey, 1983a).

In NEOMYCIN, a domain-independent diagnostic strategy is represented explicitly
and separately from knowledge about the domain (the disease taxonomy, causal and
data/hypothesis rules, and world facts). To build an expert system using NEOMYCIN,
the developer must first identify the “task” structure of the problem, e.g., make-diagnosis,
pursue-hypothesis, ezplore-and-refine. A diagnostic strategy is then represented as a set of
tasks, which are meta-level goals, and meta-rules [Davis, 1980] for achieving these goals.
An ordered collection of metarules defines a generic procedure for achieving a task. Next,
domain-specific rules are organized into rule-sets based on this task structure. Rule-sets
become active depending on which tasks have been posted.

Because NEOMYCIN’s strategic knowledge is explicitly represented, the system can
produce explanations of its problem-solving strategies. For example, Figure 6 (from
[Hasling et al., 1984]), shows that NEOMYCIN is able to give abstract explanations of
its general problem-solving strategy. In addition, the possibility of knowledge re-use exists
if indeed NEOMYCIN’s metarules constitute a domain-independent diagnostic strategy.

However, above we saw an example of NEOMYCIN'’s explanation behavior that indi-
cated that the improved representation »f strategic knowledge alone was not sufficient to
improve all types of explanations (see Figure 3). This example showed that more work
must be done to improve the understandability of the system’s explanations. In partic-
ular, techniques for summarization and choosing the appropriate level of abstraction for
an explanation in a particular situation must be devised. The efficiency of the system
is also an issue that must be evaluated, since NEOMYCIN essentially “re-discovers” its
expertise each time it solves a problem.

7.2 Explainable Expert Systems (EES) Framework

EES [Neches et al., 1985, Swartout and Smoliar, 1987b], like its precursor XPLAIN
[Swartout, 1983], grew out of the observation that much of the knowledge needed to pro-
duce explanations is not explicitly represented in the expert system’s knowledge base, but
instead remains in the system builder’s head. The goal of EES was to create framework,
or ‘shell’, that captures this knowledge. The approach taken in designing the EES frame-
work was to first identify the types of explanations that must be produced. This, in turn,
indicated the kinds of knowledge that must be represented. The EES language allows
a system developer to provide knowledge about an application domain, mainly in terms
of an abstract specification of how the domain works, how problems are solved in the
domain, and domain terminology. The system builder is then replaced by an automatic
programmer that synthesizes the desired expert system from this specification, record-
ing all the design decisions made during the program-writing process. The explanation
routines then use the recorded design history to provide richer explanations, including
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17) Has Mary been hospitalized recently?
SSWHY?

**HOW 25.0?

[i.e. HOW are we trying to develop the differential using
basic history and pertinent physical exam?

We did the following:

[26.1) Got a general idea of the problem: categorized it into
one of several pathogenic classes or disease loci, or both.

[26.2] Confirmed and refined the differential diagnosis through
specific questions.

‘We are now:

[26.3]) Rounding out the diagnostic information by looking generally
into past medical history and by reviewing systems.

[back to question 17 ....]
‘*NO

Figure 6: A Sample NEOMYCIN Explanation

justications for actions.

A sample of the explanations produced by the PEA system which was built within the
EES framework was shown in Figure 4. These explanation capabilities were possible for
two reasons. First, the EES framework provides the types of knowledge needed to support
explanation. Second, explanation is treated as a sophisticated problem-solving activity
requiring its own knowledge and expertise. Techniques from natural lanaguage generation
and new techniques for dialogue management were incorporated into the explanation
facility [Moore, 1989]. Other expert systems are being developed using EES [Paris, 1990}
and research on the explanation facility is continuing.

In addition to its implications for explanation, we have found that the EES approach
offers other advantages related to development and maintenance. For example, the disci-
pline imposed by the knowledge representation in EES, provides guidance for knowledge
engineers during the development process. We believe that this rigor will make errors
and inconsistencies in the knowledge base easier to detect. In addition, because the au-
tomatic program writer creates an executable expert system, it is the compiled code that
is actually executed, but the rationale for that code is available for explanation. Thus
representing the knowledge needed for explanation does not incur runtime overhead; the
system is not re-deriving its expertise on every run. In terms of construction overhead, it
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is clearly more work to develop an expert system using EES since more knowledge must
be represented than in a system such as MYCIN. However, we have found that mainte-
nance and evolution are facilitated since modifications are performed at the knowledge
base (i.e., “specification”) level, rather than at the implementation level. Addition of
a new domain concept requires making a few assertions and rerunning the automatic
program writer rather than extensive manual recoding.

In addition, as in NEOMYCIN, we believe that separating different forms of knowl-
edge will also reduce the amount of work that has to be done to move to a new domain.
EES has been used to construct systems in several domains: an advice-giving system
that aids users in enhancing their LISP programs, a diagnostic system that locates faults
in simple electronic circuits, and a diagnostic system for identifying faults in a local area
network. While we are gaining empirical evidence that the problem-solving architecture
of EES is general enough to support several classes of problems, in particular advice-
giving and diagnosis tasks, we are also obtaining information about the generality of
the explanation facility we proposed in EES. In particular, we are gaining experience in
determining how viable it is to provide a domain-independent explanation component.

8 Current Directions

The studies of conventional expert systems explanation facilities discussed in Sections 4
and 5 led to several important observations. First, inadequacies in the knowledge bases
of early systems were identified and led to knowledge bases that separately and explic-
itly represent the types of knowledge needed to support explanations. These included
justifications of the systems’ actions, explications of general problem-solving strategies,
and definitions of terminology. Second, we have realized that explanation is a problem in
its own right, requiring its own expertise and a sophisticated problem-solving architec-
ture. The improvements that came simply by improving expert system knowledge bases
were not sufficient. In fact, the knowledge bases of newer expert systems which separate
different types of knowledge [Swartout and Smoliar, 1987b] and represent knowledge at
various levels of abstraction {Patil, 1981], confront explanation generators with an ar-
ray of choices about what information to include in an explanation and how to present
that information that were unavailable in the simple knowledge bases of earlier systems.
Meeting the challenge posed by these richer knowledge bases will require more sophisti-
cated and linguistically motivated explanation generators. Further, we now understand
that explanation cannot be an afterthought, it must be designed into the system from
the outset.

We have seen the emergence of explainable expert system frameworks, such as EES
and (possibly) NEOMYCIN, that provide system builders with the tools they need to
develop systems that will be explainable. Experience with these shells has shown that
building an explainable system requires more work during system development, but that
the discipline imposed by explanation requirements improves the architecture for other
aspects of the software life cycle, in particular, knowledge acquisition and system main-
tenance.
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The most promising course for the future is to provide system developers with an ex-
plainable intelligent system shell that can be customized for specific application domains.
The shell would provide a domain-independent knowledge base, weak methods for prob-
lem solving, domain-independent explanation strategies, a lexicon for closed-class words,
and user model acquisition facilities. This shell could also be augmented with tools for
adding domain-specific knowledge, such as editors, authoring tools, browsing tools, and
domain lexicons.

While the feasibility of this approach can only be verified empirically as more sys-
tems are developed using shells such as the EES framework, the community has learned
much that can be useful in the assessment of explanation systems by identifying the
constraints that the need to provide explanations places on the knowledge representation
and reasoning processes of an intelligent system. These requirements themselves provide
a set of metrics that can be used to determine whether a system can readily accept an
explanation module.
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ABSTRACT

The purpose of this paper is to a) review current trends and
experimental results which have immediate application in software
engineering and b) offer a model of human behavior that may be
useful for other types of research (e.g. educational technology).
In its broadest sense, software engineering encompasses all human
uses of computers but concentrates on software development. 1In
order to improve software development, a wide range of methods
have been proposed for every phase of the development cycle, from
cost estimation to design, from implementation to product
integration. In spite of these efforts, there appears no
satisfactory method for assessing program quality or programmer
productivity other than counting the number of lines of code; a
measure that encourages programmers to produce lengthy rather
than lucid code.

This paper reviews some of the major techniques that have
been developed for assessing software production tasks. It also
reports on several experimental studies that attempt to assess
different software practices. The paper also discusses some of
the implications of software engineering related to issues of
technology assessment. Finally, the paper concludes with some
suggestions for alternatives to software engineering assessment

that reflect the human behavior aspects of software development.




I. INTRODUCTION

In 1967, a NATO study group was formed to discuss the
“software crises." At the end of one year, the group concluded
that building software is similar to other engineering tasks and
that software development should be viewed as an engineering-like
activity. Thus, the phrase "software engineering" was born,
along with the belief that programming was simply the application
of certain scientific and engineering principles. As a result,
texts were written and metrics established for the purpose of
identifying the scientific principles of software engineering
(Gelperin & Hetzel, 1988). The fact that programs still contain
bugs, are delivered late, and are over budget, should tell us
that many of the basic scientific principles of programming
remain undiscovered. Yet the goal remains that software
engineering is a discipline whose aim is the production of
quality software, software that is delivered on time, within
budget, and that satisfies its requirements.

In order to meet these goals, the scope of software
engineering has become extremely broad, encompassing every phase
of the software life cycle, from requirements to decommissioning.
It also includes different aspects of human knowledge such as
economics, social science, and psychology. To this end, a variety
of techniques have been developed for performing and evaluating
various software production tasks, from requirements and
specifications to maintenance. 1In addition to measuring the
quality of software, there are numerous studies that compare
different techniques and methodologies used to write, comprehend

and debug software. As a result, the relatively new challenge




for software engineers is to develop assessment techniques that
work and possibly reflect the more human aspects of software
development, those that acknowledge the importance of both the
programmer and the user.

The purpose of this chapter is to review some of the major
techniques that have been developed for assessing software
production tasks and to show how these models might be applied to
other areas interested in technology assessment. To this end,
this chapter has three major themes. The first is analysis and
comparison. A variety of techniques are described for software
evaluation and the evaluation of software engineering. Software
evaluation is defined as the assessment of a specific piece of
code or program produced by individuals and/or a team of
programmers. On the other hand, software engineering refers to
the practices, techniques, and procedures that are used to
produce correct and quaiity software. Because of the plethora of
present-day software engineering techniques, it is important to
select an appropriate one for the task at hand. A second theme
is that the results of experiments in software evaluation and
software engineering constitute a powerful tool for determining
which techniques are useful for a given situation. These same
techniques and tools might be used by other researchers in
related fields of technology. The third theme is that the future
of software production will necessitate the development of a new
definition of software engineering that recognizes the human
aspects of both software development and its evaluation.

Unfortunately, the human element is a factor in both the design




and use of software.

In order to develop these themes, the chapter focuses on
different perspectives of software engineering. For example, the
next section introduces the software evaluation perspective. The
wide scope of different measures used to evaluéte software is
highlighted, as are the problems of conducting software
evaluation tests. Section III compares and contrasts different
software engineering methodologies. Experiments related to the
different methodologies are also reported. Section IV includes a
discussion of current software engineering topics such as
Computer Aided Software Engineering (CASE) products and Computer
Supported Cooperative Work environments (CSCW) and shows how each
of these topics reflect an understanding of human problem
solving. These topics were selected because of their relevance
both to current software engineering practices and to the theme
of this book. The chapter concludes with a brief summary and
discussion of future research.

II. SOFTWARE EVALUATION
II. A. Definition and Characteristics

Since the 1970s the distinction between software and
software engineering has become blurred. In the "good old days"
the distinction was very clear. Software was a single piece of
code that was compiled and executed. On the other hand, software
engineering referred to the set of systematic procedures that
were applied and used when developing a collection of programs
(Schach, 1990). Now, however, the creation of an isolated piece
of code is extremely rare. Most software is written by teams of

programmers which access and control several other programs or




hardware. However, in order to distinguish among the different
software evaluation techniques, the rest of the chapter returns
to the "good old days" and uses the term "software" to denote the
end result of a process (i.e., a product), whereas software
engineering refers to the process of developing the software.
Thus, software evaluation involves the process of ensuring that
the actual product itself is "correct," while evaluation of
software engineering involves testing whether the procedures used
to produce the software are correct.

Software quality measurement is a young discipline. Because
of its relative youth, there are conflicting opinions as to what
and how specific software characteristics should be measured.

For example, several authors have argued that software evaluation
is the testing of a program until it no longer contains any bugs.
Unfortunately, as Dijkstra points out, "Program testing can be a
very effective way to show the presence of bugs, but it is
hopelessly inadequate for showing their absence" (Dijkstra,
1976). Software evaluation, therefore, implies the testing of a
product to determine if it is correct (program verification) and
exhibits certain behavioral properties (program validation).

The primary goal of any testing procedure is to determine
whether the product functions correctly. Additional software
characteristics include utility, reliability, robustness,
performance, and correctness (Gelperin & Hetzel, 1988). Utility
refers to the extent to which a program meets the user's needs,
given that the product is used according to its specifications.

The utility of the product is determined by verifying that the




program produces correct outputs when subjected to inputs that
are valid in terms of its specifications.

Reliability is a measure of the frequency and criticality of
product failure, where failure is an unacceptable effect or
behavior occurring under permissible operating conditions.
Software reliability is calculated by adding the mean time
between failures to the mean time for repairing the failures.

A product's robustness is a function of the range of
operating conditions, the possibility of unacceptable effects on
valid input, and the acceptability of effects when the product is
given invalid input. A fourth characteristic, performance, is
defined as the extent to which the product meets its constraints
with regard to response time, execution times, or space
requirements.

The last characteristic, correctness, refers to a
mathematical procedure that is used to prove that a product
satisfies its output specifications, when operated under
permitted conditions (Goodenough, 1979). In other words, the
product is correct if the output satisfies the output
specifications, given that the product has all necessary
resources.

Having identified the important software characteristics, it
becomes necessary to construct appropriate tests that measure
each of the different characteristics (Figure 1). Unfortunately,
different types of software emphasize different software
characteristics. For example, programs using artificial
intelligence techniques emphasize performance criteria rather

than accuracy or optimality (Brazile & Swigger, 1990). Indeed,
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speed of execution is often the major reason for selecting an AI
technique over other conventional methods. 1In contrast, an
operations research technique is designed to produce optimal
results at the expense of high performance. Because of space
limitations, it is impossible to list all the testing procedures
that are used in combination with the various types of software.
The remainder of the section, therefore, describes only a few
testing techniques that are used by program developers. The
reader is encouraged to investigate other sources for additional

information (Gelperin & Hetzel, 1988; Perry, 1983).

Figure 1 goes about here

I. B. Walkthroughs and Code Inspections

A Walkthrough is a software review performed by a team of
software professionals with a broad range of skills (Shneiderman,
1980). The team is usually comprised of four to six members who
are charged with the task of offering an unbiased report of the
software under construction. Thus, the lead programmer "walks"
the other members through the program. The members interrupt
either with prepared comments or with questions triggered by the
presentation. In this manner, the software is examined for faults
or irregularities.

A Code Inspection is another form of software review. The
team reviews the program specifications against a prepared
checklist which includes items such as: Have the hardware
resources required been specified? Have the acceptance criteria

been specified? A Code Inspections is a more formalized review




process and usually involves five basic steps (Fagan, 1976).
First, an overview of the design is given by the lead programmer.
Second, the code inspection team prepares comments individually
for the inspection. Third, the group inspects the code which
involves addressing each of the individual comments and ensuring
that every piece of logic is covered at least once, and every
branch is taken at least once. The fourth step, called rework,
involves resolving all faults and problems. The final stage
involves a follow-up in which the inspection team ensures that
all questions have been satisfactorily resolved.
I. C. Selection and Use of Test Cases

In order to verify that the program functions correctly, a
group of test cases is constructed to either test to
specifications (also called black-box, data-driven, functional
testing), or test to code (also called glass-box, logic-driven,
or path-oriented testing). Using the former technique, the
programmer constructs a series of test cases that correspond to
the software's specifications (Perry, 1983). In contrast, the
test to code technique requires the programmer to construct test
cases that consider only the code itself. Regardless of which
technique is selected, a "complete" testing program requires the
construction of literally billions and billions of test items.
Therefore, the "art" of test case construction is to find a
small, managéable set of test cases that maximize the chances of
detecting a fault while minimizing the chances of having the same

fault detected by more than one test case (Myers, 1978).




I. C. 1. Testing to Specifications

Equivalence Testing and Boundary Value Analysis

To determine if the product runs correctly the program
designer constructs a set of test cases such that any single
member of the class is representative of (or equivalent to) all
other members of the class (Schach, 1990). For example, if a
program is written to handle a range of numbers between 1 and 35,
then the programmer defines three different equivalence classes:

Equivalence class 1: numbers less than 1.

Equivalence class 2: numbers between 1 and 35.

Equivalence class 3: numbers more than 35
Testing a program using the equivalence class technigque requires
constructing one test case from each equivalence class. The test
case from equivalence class 2 would produce the correct answer,
while the test cases from the other two classes would produce
error messages.

Experience has shown that, when a test case is selected from
either side of the boundary of an equivalence class, there is a
high probability of locating a fault. Testing the previous

example using this technique (i.e., boundary value analysis)

would produce seven different test cases:

Test case 1: 0 (number adjacent to boundary condition)
Test case 2: 1 (boundary value)

Test case 3: 2 (number adjacent to boundary condition)
Test case 4: 15 (member of equivalence class 2)

Test case 5: 35 (boundary value)

Test case 6: 36 (number adjacent to boundary condition)
Test case 7: 37 (number adjacent to boundary condition)

Equivalence class testing combined with boundary value
analysis is an effective technique for locating faults and
requires a relatively small set of test data. Research has shown

that, when used together, these two methods constitute an




extremely powerful evaluation tool (Basili & Selby, 1987).
Functional Testing

An alternative to the above_technique is to construct test
cases based on a program's functionality (Howden, 1987). After
defining the program's functions, test data are then constructed
such that there is at least one test case for every function in
each module in.the program. If the modules are designed in a
hierarchical fashion, than functional testing proceeds in a
bottom-up manner. In practice, however, modules and subroutines
are highly interconnected and require complex functional testing
techniques; for details, see Howden, 1987.
II. C. 2. Testing to Code

Structural Testing: Statement, Branch, and Path Coverage

The simplest form of Code Testing is to examine each,
individual statement (ie., statement coverage), and construct a
of test case that ensures that every statement is correctly
executed (Schach, 1990) . Usually an automated tool is required
to record which statements have been executed over a series of
tests. Branch coverage is another type of functional testing and
involves running a series of tests to ensure that all branches in
the program are executed at least once. The most powerful form
of structural testing is path coverage which requires testing all
paths through the program. Unfortunately, if the product
contains many loops, the number of paths through a program can be
computationally quite large. Thus, the programmer learns to
reduce the number of paths by restricting test cases to only

linear code sequences (Woodward, Hedley, & Hennell, 1980), or to
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code sequences that lie between the declaration of a variable and
its use (Rapps & Weyuker, 1985).
II. D. Complexity

Software complexity is an attempt to merge theories from
cognitive psychology with theories from computer science.

Similar to psychological measures, software complexity refers to
a program's characteristics that make it difficult for a human to
understand. The underlying assumption behind these metrics is
that a product's complexity is a good predictor for product
reliability, performance, and flexibility (Shneiderman, 1980).
Thus, if the complexity of a program is measured and found to be
extremely high, then the module should be rewritten because it
will be cheaper and faster to start all over than to try and
debug and maintain the existing code.

The simpliest and most frequently used measure of complexity
is lines of code. Although this type of measure has proven
ineffective for determining programmer productivity, it can be a
useful predictor of the number of faults in a program (Basili &
Hutchens, 1983; Takahashi and Kamayachi, 1985).

Other, more accurate, predictors of product complexity and
fault rates look at either the number of decision points in a
program or the number of operators and operands. For example,
McCabe (1976) developed a measure of complexity based on graph
theory that counts the number of branches in a program plus 1.

He argues that complexity of a total product consisting of N
modules is the sum of the complexity of the individual modules.
McCabe's metric can be computed almost as easily as lines of code

and has been shown to be a good predictor for the number of
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faults in a program (Schach, 1990).

Halstead's Software Science metric (Halstead, 1977) has also
been used to measure complexity and fault rates. Halstead's
method is based upon the ability to count, for any program, the
number of unique operators (such as IF, =, DO, PRINT) and the
number of unique operands (such as variables or constants). The
other two basic elements are the total number of operators and
the total number of operands. From those counts, Halstead
derived functions for predicting properties such as program
length, program volume, and program level. Subsequently, he used
those results with theories and assertions relative to cognitive
psychology and derived equations that predict the mental effort
and time required to write different programs. He also
speculated about the relationship between program metrics and
text analysis.

Although the idea of measuring a program's complexity is
appealing, the exact nature of its use remains in question. The
development of a theory of programming based on the most
primitive components of programs - operators and operands -
unquestionably is appealing. However, the ability to provide
measures that accurately reflect and predict the mental processes
involved in programming has not been fully documented.

II. E. Correctness

Recently, the idea of correctness and correctness proofs has
become a major topic in computer science (Dijkstra,1990). In an
an attempt to provide a mathematical framework for computer

programming, several researchers have developed special




verification techniques that prove the correctness of a program.

The major difference between testing and correctness proofs
is that testing is performed by EXECUTING a program, while a
correctness proof is a mathematical verification that the product
is correct; the product is NOT executed using a computer. a
program is said to be correct if its output satisfies its input
specifications. This, of course, does not necessarily mean that
the product is acceptable to the user. It only means that the
product satisfies its specifications.

Space requirements prohibit an elaborate explanation of
correctness proofs. A brief example of a code fragment along
with its corresponding flow chart and proof is provided for the
interested reader (Figure 2). Additional details on how to
perform correctness proofs can be found in (Manna, 1974) and

(Dijkstra, 1976).

Figure 2 goes about here

It has been shown that correctness proofs by themselves are
insufficient to verify programs. It has been demonstrated that a
program that is proved correct may still contain several errors
(Leavenworth, 1970; Goodenough & Gerhart, 1975). The studies
indicate that the combined use of test cases and correctness
proofs is the only way to ensure that a program contains no
faults. Thus, correctness proving must be viewed as belonging to
the larger set of techniques that can be used to check that a
product is correct.

II. F. Implications of Software Testing to Technology Assessment

A number of studies have been performed comparing different
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strategies for testing software. For example, Myers (1978)
compared specification-testing techniques with different code-
testing techniques and structured walkthroughs. Similarly,
Basili and Selby (1987), compared specification testing, code
testing and code inspection techniques. Both studies found that
the different testing techniques were equally effective, with
each technique having its own unique strengths and weaknesses.
Although no one technique was found to be superior, they were all
found to be better than using no technique.

The obvious implication of such studies is that educational
software (as well as other types of application software) is
software and, as such, requires both testing and verification.
The application of software evaluation techniques to the
evaluation of educational software should be performed at each
stage of the software development process. It is interesting to
note, for example, that educational researchers routinely report
measures of validity and reliability for studies relating to IQ
and skill acquisition. Yet, these same researchers rarely report
measures of program reliability or validity for educational
software. The absence of such measures seems to indicate that
authors of educational software are either ignorant of software
testing procedures or incompetent to perform such tests.
Hopefully, this is not the case and that program reliability and
validity for educational software will be reported in the near
future.

Other implications of the software evaluation process is
that software testing techniques, especially those used for the

construction of test cases, can be applied to other areas of
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technology assessment. For example, in order to demonstrate that
software is appropriate for different types of populations, it is
sufficient to show that members from different equivalence
classes can perform equally well.

Although software testing may ensure that the product
contains no faults, none of the above techniques ensures that the
user will like fhe product. Software evaluation measures simply
test for errors and violations of specifications. If the
specifications are poorly defined, then the software may be
unacceptable to the user. As a result, the software evaluation
process must consider the context in which the product is used
and produced.

III. EVALUATION OF SOFTWARE ENGINEERING
III. A. The Life-Cycle Models

As previously stated, the idea that a product exists as a
single piece of code is no ionger valid. A program may be
required to run in parallel, on different machines, under
different operating systems, and accessing multiple databases. As
a result, special methodologies, models, and procedures are used
to systematize the production of large programs. The broad term
assigned to these approaches is the "life-cycle model" because it
describes procedures for carrying'out the various functions of
software development. Once a model has been selected, miles*ones
are established and an overall plan for‘product development is
established.

III. A. 1. The Waterfall Model

Two software engineering models commonly used are: the
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Waterfall Model and the Rapid Prototype Model. Actually, the two
models are very similar to each other and vary only in one area.

As first proposed in 1970, the Waterfall Model (Royce, 1970)
describes the conventional approach to software development. The
version, as it appears in Figure 3, suggests that the software
development cycle consists of six separate phases: reguirements,
specifications, design, implementation, integration, and
operations. Following each phase is a period of testing and
verification which, if unsuccessful, forces the developer to
reevaluate previous specifications and design. The Waterfall
Model with its feedback loops and iterative design process allows
for revisions of the design, and even the specifications, at
every stage of the process. It should be noted that testing is
not a separate phase of the process, but occurs continuously

throughout the life cycle of the product.

Figure 3 goes about here

Although communication with the client occurs at each phase
of the life cycle, a list of specifications does not always tell
the user how the finished product will look or feel. Thus, the
Waterfall Model, depending on how it is implemented, can
sometimes lead to software that is unacceptable to the user. As
a result, the Rapid Prototyping Model was developed to solve this
problem.

III. A. 2. The Rapid Prototype Model

A prototype is a working model that is functionally
equivalent to a subset of the product. The first step in the
Rapid Prototyping life cycle is to specify a product's
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functionality and then build a program that matches those
specifications. Once the client is satisfied, the software
development process continues as shown in Figure 4. The two most
important items to remember when using the Prototype Model is
that 1) the prototype is built for change; and 2) the prototype
is built as input to the specification stage. Thus, the
prototype is simply a minor detour from the normal path of

software developnent.

Figure 4 goes about here

The use of rapid prototyping as a way of minimizing risk is
the idea behind the Prototype Model. Unfortunately, rapid
prototypes are often accepted as the end product, or as a
substitute for written specifications. Another potential problem
is that prototypes may not adequately assess hardware needs for
large-scale software products. There are substantial differences
between large-scale and small-scale software, and a prototype
cannot adequately assess the type of hardware needed for large-
scale tasks.

Yet Rapid Prototyping combined with the Waterfall Model can
produce an acceptable life-cycle model for developing software.
Prototypes are_extremely useful for demonstrating how the
interface will look to the end user. On the other hand, the
Waterfall Model provides a systematic set of procedures for
designing, implementing, and integrating large-scale products.
III. A. 3. The Implications of the Life Cycle to Technology
Assessment

As previously stated, testing is an inherent component of
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the entire product life cycle and requires careful validation at
every stage of development. Following each phase of product
development, specific tests are performed and examined. For
example, a structured walkthrough is staged during the
specification stage, while module testing and test case selection
occurs during the implementation phase (Figure 5). The idea that
different tests are used at different times during product
development should be applied to other areas of technology
assessment. It is not uncommon, for example, to find a research
team comparing students' performance using different media.

These studies consist of a single test designed to determine
whether the technology meets its requirements, is integrated
correctly, and outperforms all other treatments. A better
approach to software evaluation is to design multiple tests in

parallel with every stage of product development.

Figure 5 goes about here

III. B. The Design Phase

Rather than describe each phase of the software life cycle,
together with its appropriate testing procedures, this section
focuses on the DESIGN phase of software development. Just as an
an outline serves as a catalyst for written works, a design
technique drives effective software development. Thus, program
design is a very critical phase of the software development life
cycle. Techniques and tools that effectively represent
requirements in a format that results in a fault-free product are
essential to a good program design. A description of these tools

and their evaluation, form the subject of this section.
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A design methodology is an artificial language that enables
the programmer to describe a particular type of problem at a
conceptual, rather than implementation, level. The tools (ie.,
pseudo code, Warnier Orr Diagrams, Hypo-Charts) that are derived
from the design methodology allow the programmer to be precise
about which parts of the program are program specific and which
parts address a more general design plan. Programmers who use
design methodologies perform better because they are forced to
divide the problem into smaller modules that are easier to
design, code, and debug. Such a methodology permits the designer
to cooperatively develop systems using a shared language of
architecture constructs, rather than a set of problem specific
primitives.

Different design methodologies tend to emphasize different
aspects of the programming process. For example, some design
methodologies are very effective for showing data and the
relationship among data items, while other methodologies stress
data flow or program functionality. Two design techniques that
highlight different aspects of the design process are Petri nets
and Entity-Relationship (ER) diagrams. Petri nets have proven
extremely useful for describing real time systems because they
describe the flow of data throughout the system. 1In contrast, ER
diagrams are effective for representing the object-oriented
programming paradigm because they show data and the relationship
among data. The connection between the specification language
and the problem description can be very critical as shown below.

Petri nets are abstract, formal models of information flow

that look very similar to directed graphs. As illustrated in
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Figure 6, nodes are used to represent completion of events, while
arcs represent transitions from one event to another (Peterson,
1980) . Petri nets have been successfully used for problems
relating to parallel computation (Miller, 1979), multiprocessing
(Agerwala, 1979), knowledge representation (Jantzen, 1980), and
human information processing (Schumacker & Geiser, 1978).
Although Petri nets can be used to represent descriptive data,
they are more suited to describing information flow. For this
reason, Petri nets are useful for specifying real-time systems,

with timing issues being critical.

Figure 6 goes about here

As illustrated in Figure 7, an Entity-Relationship (ER)
diagram consists of nodes that represent entities and arcs that
represent the relationship between two entities. ER diagrams
were first introduced by Chen (1976) who used them to describe
the Entity-Relationship database model. As such, ER diagrams are
more appropriate for describing data and the relationships among
data. More recently, ER diagrams have been proposed as a design
language for knowledge-base development (Addis, 1985; Swigger &
Brazile, 1988), and have proven effective for describing object-

oriented systems (Boehm-Davis, et. al., 1986).

Figure 7 goes about here

III. B. 1. Design Comparisons
Many other formal techniques have been proposed. For
example Anna (Luckham & von Henke, 1985) is a formal

specification language for Ada, while Refine (Smith, Kotick, &
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Westfold, 1985) and Gist (Balzer, 1985) are used to describe
knowledge-based systems. Research has recently discovered that
the decision to use a particular design technique for a specific
project depends on the problem that needs to be solved. Boehm-
Davis and Ross (1984), Boehm-Davis, Holt, Schultz, and Stanley
(1986), Boehm-Davis and Fregly (1983) performed a number of
studies which were aimed at determining the effect of using
different design/documentation formats in a variety of
comprehension, coding, verification, and modification tasks. The
Boehm-Davis and Ross (1984) first determined that performance on
a set of software tasks was linked to documentation type. Boehm-
Davis and Fregly (1983) next compared different documentation
formats such as PDL, abbreviated English, and Petri nets and
found that performance scores varied as a function of
documentation type. Finally, Boehm-Davis et al. (1986) asked
experienced programmers to modify several different types of
programs in combination with several different types of design
tools. The authors concluded that different design/documentation
formats did indeed effect both design time and problem solution
time and that the differences could be attributed to the
different types of problems.

Similar experiments have examined different design tools
used to program expert systems. Swigger and Brazile (1989; 1990)
found that programmers who used a design tool performed
significantly better on modification tasks than programmers who
did not use a design tool. Results also suggested that there
were differences between different types of design tools, and

that different design tools effected different types of
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programming tasks.

What seems to be important for the development of both
conventional software as well as_expert systems is that the
design technique provide a uniform representation and
organization of the more general problem description. This should
also be true of design tools that are used to develop educational
software and other types of applications. Thus, it appears to be
necessary to identify a software product as belonging to a
specific class or type of problem and then use the design
techniques that best represent the problem type. This type of
classification relates to both the domain knowledge and

programming techniques that are used to solve the problem.

IV. AUTOMATED PROGRAMMING TOOLS

The idea that domain knowledge and programming knowledge are
equally important for the construction of good software has had a
major impact on the development of automated programming tools.
Although the concept of a total automatic programming environment
remains a fantasy, there are several recent developments that
bring the fantasy closer to reality. These types tools are known
as Computer Aided Software Engineering (CASE) products.

In the past, the terms automatic programming and CASE were
applied to any type of programming tool that automated any part
of the program life cycle (Balzer, 1985). It is only recently
that companies have developed products that, through a successive
series of steps, are able to transform specifications into
executable source code. The transformation process is by no

means fully automated; human intervention is required in deciding
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which transformations to apply, and precisely where to apply the
transformations. Underlying these successful products is a model
of programming as well as a model of the domain.

One current CASE tool conceptualizes the programming model as
consisting of inputs, processes, and outputs (Figure 8). Input
objects include both screen and file objects. Output objects
include screen-and file objects as well as report objects. Then,
depending on the application, process objects (eg., sort,
sequence, retrieve, etc.) are used to transform the input/output
objects. The CASE tool creates the different objects (ie.,
screen, report, sort, etc. objects) by asking the programmer to
supply both domain-specific and programming knowledge. For
example, the CASE tool creates a specific report object by asking
the programmer to provide the format of the report, the heading,
the names of the specific data items to be processed, the primary
control break, etc. Thus fair, CASE tools have been developed only
for restrictive domains such as business applications (Frenkel,
1985), database problems {(Kaiser, Feiler, & Popovich, 1988), and

data analysis problems (Balzer, 1985).

Filgure 8 goes about here

Another approach to automated programming is to build
specialized tools for a specific programming language. Such
tools can handle much of the drudge work of programming, leaving
the creative work to the human programmer. Powerful debuggers,
intelligent editors, and elaborate programming environments are
included under this approach. It has been argued that the use of

such tools is, in itself, a sufficient condition for increased
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programmer productivity and effectiveness (Barstow, 1985). For
example, there are powerful debuggers for the C programming
language, that optimize code, provide powerful debug messages,
and suggest effective programming styles.

A third type of computer tool focuses on the problem of
supporting team programming and large product development
projects. Computer-supported cooperative work (CSCW) is a
research area that includes the development of computer systems
that support group design activities. For example the Software
Technology program at Microelectronics and Computer Technology
Consortium is working on the problem of Issue Based Information
Systems (IBIS) which will help software designers by supporting
structured collective conversations through planning (Conklin,
1986). In a similar manner, this author has recently built and
evaluated an intelligent interface to support computer-supported
cooperative problem solving. The system serves as a testbed for
investigating tools that people use while engaged in technical,
cooperative tasks such as working on large programming projects
(Swigger et. al, 1990). Each of the online tools represents and
is linked to a requirement for successful communication (Figure
9). For example, following an examination of how to build common
vocabularies, an online tool was created that enhances this
requirement. Thus, the system is designed to test a "theory of
communication" which states that effective cooperative problem
solving is dependent on effective communication which, in turn,
consists of common vocabularies, syntax, objectives, etc. If the

communication model is correct, then the cnline tools should
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enhance communication performance.

Figure 9 goes about here

Whether in the form of a CASE tool, a powerful debugger, or
a CSCW tool recent advances in programming incorporate models of
programming as well as models of the domain. As research
indicates (Pennington, 1987), computer programming is a highly
complex task with many components. It is often compared to other
types of tasks in an attempt to understand its underlying
processes. For example, programs have been compared to texts
(Atwood & Ramsey, 1978). As such, they are described as having
organization and structure, and programmers are said to have
general schemata that guide encoding, representation, and
retrieval of the program-as-text (eg., Rumelhart, 1981).
Programming has also been compared to expert skills such as
playing chess or Go, and diagnosing faulty electric circuits.
This particular analogy focuses attention on the potentially
large stores of specific programming patterns that have been
learned through extended practice (Chase & Simon, 1973; Chi, et
al., 1981; Barstow, et. al., 1984). Finally, programming has been
analyzed as a planning and problem solving task that utilizes
some general strategies such as problem decomposition and
reformulation (Newell & Simon, 1972); Miller & Goldstein, 1979):
Soloway, et.al., 1988) The suggestions for program planning have
been much closer to the computer scientist's view of orderly,
top-down structured programming than the psychological literature
would lead us to expect.

It should be noted that the above analogies are not
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necessarily contradictory. Programming-as-text focuses on
comprehension and memory and working backwards from program to
interpretation. Programming-as-planning focuses on successive
construction and working forward. Programming-as-expert-skill
focuses on the organization of knowledge specific to the
programming domain that is clearly implicated in both
comprehension and construction of programs. The challenge is to
develop programming tools and software evaluation techniques that
reflect the human aspects of programming as well as the specific
problem domain. As such, the software tools and the software
evaluation techniques need to incorporate models of programming
and models of the domain.
V. SUMMARY AND IMPLICATIONS FOR FURTHER RESEARCH

One goal in extensively reviewing the existing studies on
software evaluation and evaluation of software engineering has
been to identify important themes that pertain to programming as
well as technology assessment. Across evaluation tasks, a
recurring question concerned the existence and nature of
meaningful measures with which to evaluate software and software
engineering practices. Several measures were examined, and a
wide variety of evaluation techniques and formulations were found
that address different aspects of the software development cycle.

The paper first distinguished between software and software
engineering and stated that the difference related to their use
and function: specific code that solves a domain specific
problem versus a model or methodology for general program
development. As a result of this distinction, it was possible to

discuss code evaluation as opposed to the evaluation of a
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programming methodology. A second distinction concerned the
model of programming that each of these two areas measures;
error free code versus general problem solving. Although such
distinctions exist, it was noted that most programs are now
written as part of larger systems. As such, software and
software engineering involve the use of general problem solving
strategies as well as specific domain knowledge. Thus, a second
recurring set of questions concerned the definition of software
(or software engineering) and, indirectly, the definition of
programming: (1) Is programming a series of successive
transformations of the external problem domain into a
representation in the programming language? (2) Can a program be
evaluated separate from either its domain or programming
techniques? 3) Are there fundamental structural components of
programming that exist?

This review also documented that conflicting evidence exists
on software and software engineering evaluation. Although
software evaluation studies have not demonstrated the existence
of a single set of principles for software evaluation, there are
several software measures that can be applied to other areas of
technology assessment. Similarly, software engineering studies
addressing larger issues of software design fail to report a
single design methodology that results in the production of
quality software over time and for every type of application.
Yet, the idea of using different tests for different phases of
the software development life cycle is a major lesson to be

learned from these studies. A second lesson seems to be that
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every development group must decide what type of evaluation
procedure is appropriate for a particular problem type.

In considering the various topics in this chapter, it has
been noted that it is difficult to draw definitive lines between
evaluation of software and evaluation of software engineering.

It has been argued that an understanding of a model of
programming is closely related to both the construction of
effective software and a programmer's systematic approach to a
problem. A model of programming involves the cognitive
representation of particular programs at the surface level of the
code, at a deeper structural level, and at an interpretive level.
It also involves a similar representation of the knowledge of the
application and a deep understanding of how it will be used by
the client.

Some reasons for focusing on developing models of
programming and then using these models to derive performance
measures for software is that it has implications for the
development of programming aids. One can imagine, for example,

a programming tool that is capable of transforming different
representations at different levels of abstraction. The tool
would be able to analyze domain specific information and use this
knowledge to suggest possible programming strategies. A
different scenario would entail using a programming tool to
design screens, write procedures, and develop data structures.
The tool would interrupt the programmer only when it identified
an error. A third type of tool would enable programmers located
in different cities and countries to work together on a single

programming project. Such a tool would allow team members to
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exchange code, documents, and design information in an effort to
create a useful, robust, reliable, and correct program.
Regardless of which version of the future one prefers, the
development of an effective programming tool depends on a clear
understanding of the programming process as well as the
application domain.

Other reasons for studying models is that that have
implications for the development of measures of program
assessment. Current programming measures are inadequate to
evaluate large programming projects. Testing all paths or
constructing sufficient test cases are impractical for current
software development projects. Although every piece of software
must produce correct results, it must also be acceptable to the
user. Therefore, it is important to consider the human aspects of
software development to determine issues of complexity,
maintainability and usability. It has been documented that
programmer productivity increases, complexity decreases, and
program performance increases, when software engineers use "good"
programming practices. Being able to define "good" programming
practices in terms of a model of human performance should also
improve productivity and performance.

There is a final lesson in this analysis that has relevance
to the general issue of technology assessment. Once software is
transferred from the programmer to the user, the question of
software evaluation or even evaluation of software engineering is
no longer relevant. At this point, the question should be

whether the underlying "model" of pedagogy, communication,
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explanation, learning, etc., as represented in the computer
program, is correct and effective? As a program advances to its
final stages of development, it ceases to be a program and
becomes a model of human performance. Therefore, product testing
and evaluation should concentrate on the model and not the
program.

The intention of *this chapter has been to review the existing
practices in software engineering for program evaluation, to
identify some recurring questions, and to suggest some
implications of human bebavior for software evaluation and for
technology assessment in general. There are clearly other
avenues of research that might be pursued productively in the
study of assessment of software practices. However, these
avenues will necessitate am understanding of the human aspects of
problem solving and the way that these aspects interact with

specific domain.
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UTILITY
* Usability Tests

RELIABILITY
* Walkthroughs
* Code Inspection
* Number of Bugs + Downtime
between Failures

ROBUSTNESS
* Test Case Selection
* Functional Testing

PERFORMANCE

* Execution Time

* Average Response Time

* Memory Constraints
Hardware Constraints
Portability

» %

CORRECTNESS
* Proofs of Correctness

Figure 1: Measurement Techniques for Program Characteristics
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TESTING DURING REQUIREMENTS PHASE
* Prototype Development

TESTING DURING THE SPECIFICATIONS PHASE
* Structured Walkthroughs -

TESTING DURING THE DESIGN PHASE
* Design Inspections

TESTING DURING THE IMPLEMENTATION PHASE
Equivalence Testing & Boundary Analysis
Functional Testing

* Statement, Branch, and Path Coverage

* Complexity

* Correctness

* %

TESTING DURING THE INTEGRATION PHASE
* Module Testing
* Acceptance Testing
* Hardware Testing

TESTING DURING THE OPERATIONS PHASE
* Corrective Testing
* Regression Testing

Figure 5: Testing and the Life-Cycle Model
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CORRECTNESS
‘1 ------- Ne(1.23...)
o= 1 (Input specification)
Bl ~~---—1=1
S=0
|l ~—=~=--- l=1and S =0
ISN+1andS=Y(1)+YQ2)+...+Y(0-1)
(Loop invariant)

I=N+vand S =Y(1)+ Y(2) +...+Y(N)
(Output specification)

E '!.o.--—-~ JgNand S = Y(1) + Y(2) + Lt Y( - 1)

S$:=8+ Y()
Fl —==-~=1sNandS=Y(1) + Y(2) +... +Y(l)

=141
______ IsN+1andS=Y1)+Y(2)+...+Y( - 1)

Figure 2: Example of a Proof of Correctness
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Figure 7: Example of ER Diagram of an Expert System
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Assessment of Enabling Technologies for Computer-Aided Concurrent Engineering
(CACE)

Azad M. Madni! and Amos Freedy, Perceptronics. Incorporated. Woodland Hills,
Californi .

SUMMARY

in today's competitive industrial environment, a major priority is the development
of new and novel approaches for dramatically reducing product development times
while improving overall product quality. The concept that has become pivotal to
achieving these objectives is concurrent engineering (CE). CE offers several
advantages over traditional sequential engineering including shorter product
development times, superior product quality, dramatically higher acceptance, lower
cost, and higher assurance of meeting time-to-market fequirement. CE calls for early
and regular collaboration among engineering, manufacturing, management and
support personnel during the product planning and design processes.

This paper provides an assessment of enabling technologies underlying CE. It
presents a conceptual framework that provides the basis for discussing the
technological components. These include: a collaborative design environment,
"executable” process models and design specifications, a formal approach to human-
machine integration, interactive multi-media technologies and computer-aided

concurrent engineering tools and their integration.

1Requests for reprints should be sent to Azad M. Madni, Perceptronics, Inc., 21135
Erwin Street, Woodland Hills, CA 91367.

Running Title: Concurrent Engineering Technology Assessment
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INTRODUCTION

In the last three decades computer-aided automation has seen a steady
increase in the different phases and facets of a product's life. The factory of the future
seemed imminent. But after huge expenditures and frequent speculation, it became
apparent that the design automation concepts and sophisticated equipment could not
keep up with an environment plagued by constant change. Variations in raw material
and equipment breakdown are but a few examples of how "change"” is the rule, not the
exception in manufacturing environments. Moreover, despite the manifest advantages
of "soft” automation, there are still excessive delays in time-to-market that, in part,
negate any advantages.

The fundamental problem is that the traditional approach to solving large
complex engineering problems is inherently sequential, i.e., the problem is
decomposed into its constituent subproblems and the subproblems are tackled
sequentially -- moving from R&D of materials and processes, to product design,
manuftacture, installation, and support. This approach has obvious drawbacks
including: late discovery of problems; long, costly design iterations; suboptimal
solutions due to insufficient evaluation of options early in design; long product
development times; concomitant negative impacts of product cost, quality,
supportability; and last minute engineering changes due to design shortcomings
discovered at manufacturing time.

In light of these manifest deficiencies with sequential engineering, the industry
is turning to concurrent engineering . Winner et al (1988) offered the following
definition of concurrent engineering in IDA Report R-338.

"Concurrent Engineering is a systematic approach to the inte-
grated concurrent design of products and their related processes,
including manufacture and support. This approach is intended to

cause the developers from the outset, to consider all elements of
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the product life cycle from conception through disposal, including

quality, cost, schedule, and user requirements.”

This paper presents a conceptual framework for CE, along with an assessment
of enabling technologies and tools that can promote and naturally enforce CE
principles and practices.

COMPUTER-AIDED CONCURRENT ENGINEERING

In a concurrent engineering environment, multi-disciplinary teams consisting of
different members from the design, manufacturing and support functions work together
with the customer on all phases of product development, fully sharing information and
participating in decision making.

The challenge of concurrent engineering is to overcome organizational
fragmentation and manage complexity through a combination of cultural changes and
technological innovation. CE requires a new approaéh to accountability, focus, and
coordination of multiple objectives-oriented teams. Specifically, the introduction of CE
requires that both vision and knowledge must be aligned across the different
functional groups (materials, engineering, manufacturing, management, and support
services).

The concurrent engineering team usually works under a single budget. Since
the team has a common goal, design changes that provide an overall benefit to the
team can be identified quickly. Resolution of design deficiencies does not have to be
deferred, but addressed as soon as they are discovered. This strategy is key to
producing a robust system that incorporates the best or acceptable features for all.

With respect to the insertion of CE methods and tools within design and
manufacturing environments the challenges are managing application complexity
while producing a useful product; managing cultural change while introducing CE
principles and practices; managing technical and technological difficulty without losing

focus; leveraging existing tools and inplace procedures, to the extent possibie, without
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violating CE principles; and measuring incremental progress to ascertain accom-
plishment of interim milestones without interfering with ongoing work.

While concurrent engineering has been accepted in concept by the engineering
and manufacturing communities, a unified framework for introducing CE practices,
procedures and tools is necessary to feel the full impact of CE. The concurrent
engineering process (Figure 1) is conceptualized from this viewpoint. The main idea
behind this process is to allow the designers to look "down the line" while still in the
early stages of the design process. The figure shows the overall process and
sequence of design steps undertaken by the collaborative design teams in the

concurrent design of a product.

Insert Figure 1 about here

Figure 1 shows a conceptual framework for CE. Starting with a preliminary set
of requirements the design teams collaborate in the design process within a design
environment that supports electronic mail, teleconferencing, and sharing of all "design
objects” (e.g., partial solutions, design versions and tools). The preliminary design
process is facilitated by "rough cut" process modeling and analysis tools: The design
teams construct high-level process models in the application domain with the help of
the process modeling tools. The preliminary design is progressively refined into
detailed process models for indepth analysis. When the process and product design
specification becomes relatively "stable”, the manufacturing process is simulated and
evaluated prior to making a commitment to hardware. The process simulation requires
“"executable” process models for simulating the different flows in a manufacturing
enterprise. Several design versions are created during the course of this simuiate-
and-evaluate cycle. These are catalogued in the order created along with attendant
assumptions, decisions and constraints thereby creating a design history and design

version audit trail for future use by the design teams.
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ENABLING TECHNOLOGIES

Realizing the full benefits of concurrent engineering is far more than a techno-
logical problem. In fact, to realize the full impact of CE requires a fundamental cultural
change at all levels in an organization. The technology assessment done in this
paper is from two perspectives: (1) how technology can enhance the simultaneous
development of the product and the process; (2) how technology can provide the basis
for realizing a much-needed cultural change. Within the overall framework of Figure 1
we discuss and assess five different enabling technologies: (1) collaborative design
environments; (2) "executable” process models and design specifications; (3) human-
machine integration methodologies; (4) interactive muiti-media technologies; and (5)
CACE tools and tool integration techniques.
. ter-Aided Collaborative Des

A key element of the design process is to ensure that all key decision-makers
and system operators can participate on design teams. Since it is not usually practical
to have collaborative sessions involving all technical disciplines (e.g., manufacturing
operations manager, design engineers, production engineers, reliability/main-
tainability engineers, systems designer, and shop floor managers), the project leader
or task force needs to partition tasks to be carried out by teams of 4-6 people and to
plan communication and coordination needed between the design teams. To expand
communication, each member of the design team needs access to and protocols for
the use of terminals and servers that provide full, high resolution interactive graphics
capabilities. The different terminals, workstations or mainframes need to be
interconnected via an Ethernet network using the X-Window System™ standard. The
members of any design team need to be supported by an environment that helps them
communicate easily with each other, to coordinate their activities, and to share
common design objects (e.g., design representations, design history, and design

tools).
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Figure 2 shows a high-level view of the Collaborative Design Environment
(CDE). A large screen display facilitates focus on the issues being discussed
whenever a subgroup meets tace-to-face in the same room. In those situations where
subgroup participants in a design session are remote from each other, inherent delays
make synchronous interaction more difficult, so that more structured protocols are
necessary to guide orderly discussion and decision-making. The open systems that
have become available recently involving heterogeneous servers and workstations
using UNIX™, Ethernet, and X-Windows have made possible several interactive
functions that were previously infeasible. The process can be helped by
teleconferencing technology, including FAX and video hookups. Of crucial importance
to this work is the extent to which each participant can be made aware of changes to
design objects and the ease with which each can access the state of such objects in a
global data base. Figure 3 shows the functionalities required from the collaborative

design environment.

Insert Figure 2 about here

Insert Figure 3 about here

While collaborative design is a well-received concept, there are still some
technical hurdles (e.g., the ability to share design "objects”) that have to be overcome
to develop an effective Collaborative Design Environment (Mujica et al., 1990).
Executable Process Models

Process models allow description, integration, and evaluation of the different
"flows” in a manufacturing enterprise at different levels of detail and from multiple

perspectives (Madni et al,, 1990; Estrin et al., 1986).
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Process models, or models that produce executable specifications (Madni et al.,
1990; Harel et al., 1988), allow the design team to analyze the impact of "downstream”
constraints on candidate designs with a view to achieving a design that satisfies
manufacturing, assembly, cost and support constraints. Table 1 provides a summary

of the desired characteristics of process modeling and simulation.

Insert Table 1 about here

H -Machine Int i
In the foreseeable future, humans will continue to serve as "enabling components”
in a manufacturing enterprise. Proper integration of humans and equipment can make
all the difference between a relatively trouble-free factory and one that is beleaguered
with human errors arising from a poor integration of humans and machines. Madni's
(1990) approach to human-machine integration relies on four different classes of
simulation. This family of simulations is designed to produce the most cost-effective
solutions at various stages of the concept development/exploration and demonstra-
tion/validation phases of the design process. Table 2 provides a comparison of the
applicable simulation approaches, their respective strengths/advantages and cost
impacts. As shown in this table, a staged simulation methodology provides the basis
for an effective human-machine integration approach. Each of these simulation stages

are discussed below.

Iinsert Table 2 about here

Analytic Simulation, the first level of simulation, is directed to modeling all
"flows" in a manufacturing process with heuristic/rule-based models of human

operators working with simulated machine counterparts (Madni, 1988b). From a
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human-machine integration perspective the purpose of this simulation is to determine
operator workload with different function allocation options and levels of automation.

Designer/User-in-the-Loop Simulation is the second level of simulation that
employs a real operator (versus a model) working with the simulation. The purpose of
this level is to solve man-machine integration problems, uncover deficiencies in the
overall concept of operation, and to refine the human behavior models within the
analytic simulation. This level pertains to the "horizontal prototyping™ phase in
interactive system design (Madni, 1988b).

Designer/User-in-the-Loop Prototyping is the third level of simulation. The
purpose of this level is to demonstrate selected functionality of the overall system for
designer / operator review and feedback prior to the systems integration task.

Users-in-the-Loop Networked Simulation is the level associated with the
command and control of an automated factory. From a man-machine integration
perspective, this level of simulation analyzes individual operator's communication and
coordination load and error patterns while operator perform their assigned tasks.

Interactive multi-media technology has opened up a whole new dimension in
human-machine relations and human-human collaboration. Specifically, advances in
multi-media storage and delivery have expanded the range of options available for
teleconferencing, collaborative design, embedded training and education. Figure 4
summarizes a few key capabilities and sample uses of the different components of a
multi-media environment. Today, it is widely believed that IMT will realize the much
needed shift in paradigm in systems design and manufacturing. For example, by
merely incorporating a "live video" window in a design workstation so that each
individual designer can see and hear another (in a designated window) as opposed to
interact through text messages can contribute to teamwork and bring about this much-

needed cultural change. Similarly, 3-D animation video such as DVI, CD-l can
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promote visualization in educational workstations. Table 3 provides examples of

some effective uses of the different multi-media technologies.

Insert Figure 4 about here

Insert Table 3 about here

c ror-aided C { Enqineering Tools and Their | ,

- As designs evoive, the design team needs appropriate tools to support the
different design activities. A broad array of analytic, heuristic, empirical and
simulation-based tools are required to achieve the collective objectives of a product
design within a CE rubric. CACE tools are a set of software tools on graphics
workstations that help the collaborative dpsign team visualize and analyze how their
design will be built, tested and introduced on the shop floor. Computer-aided
concurrent engineering (CACE) tools are the "productivity multipliers” in CE. CACE
tools serve various purposes and different users. For the tools to be effective they
must be delivered on the host environment-compatible platform and language. Figure

5 provides an overview of the major elements of CACE.

Insert Figure 5 about here

The System Design and Modeling Toolkit subsumes all structural models (e.g.,
assembly design, task modeling, data base generators), behavioral models (e.g.,
manufacturing process simulation, performance analysis) and tradeoff analyses
models (e.g., cost-benefit analysis, yield-to-performance analysis). This toolkit

includes both process modeling and product modeling tools.
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The User Interface Generation Toolkit comprises prototyping, programrhing and
"storyboarding” aids. Specifically, visual programming tools, windowing, screen layout
and dialogue design tools fall under this category.

The Human-Machine Integration Tools consist of human-machine function
allocation tools, task-imposed workioad analysis tools and user interface analysis
tools (e.g., complexity analysis, scripting and animation, simulation, and visualization).

The Systems Integration and Extensibility Tools consist of horizontal integration
and vertical integration tools, and various combinations of the two (Madni, 1988b).

Despite the existence of numerous tools directed at facilitating the development
process, a major impediment to realizing a comprehensive solution is the current state
of tool integration. CE software tools may be referred to as integrated simply because
they share a common user interface or because a vendor offers tools that support
more than one phase of the software development life cycle. Some speak of tool
integration in terms of the support of shared data storage (Wasserman, 1988), while
others describe a fully supported development life cycle (Martin, 1990) where all tools
interface to a common framework/database in a distributed environment (Phillips,
1989).

Tools cannot yet be defined as fully integrated, i.e., both control integration and
data integration. Most tools / toolsets could be defined as data integrated (or, more
appropriately "joined") with an underlying object database. The tools may even share
this "dictionary,” but may be limited by any level of scope, interoperation, or
environmental capabilities. These tools may not represent or interact with the multiple
views or phases of objects required in coordinated, heterogeneous data storage. Most
tools also do not incorporate the external control interfaces and formats that are
required for automatic inter-tool process / data flow.

There are different views on what constitutes tool integration and at what level
tool integration should be considered for a specific application or project. Specifically,

there are five classes of tool integration:
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« Internal integration, i.e., integration of tools and data of a single vendor.

« External integration, i.e., integration of tools from muitiple vendors.

» Environment integration, i.e., integration of tools with the operating
environment.

» Process integration, i.e., integration of the development process-related
activities.

» End-user integration, i.e., integration of tools with their end user group.

Internal Integration. Internal integration is the integration of tools and data of a
single vendor. Such tools use either a local data dictionary or are "joined” through a
central, shared dictionary. The data dictionary is invariably a type of (relational)
database that allows a vendor to offer consistent data for the tools. The resuitant
product is generally proprietary.

The primary problem with internal integration of single-vendor tools is the limited
range of tools offered by the particular vendor. Vendors generally do not offer a full
complement of (integrated) tools. Further, the tools tend to be targeted to either
personal computers or workstation / mainframe environments. In those rare instances
when a single vendor offers a full range of tools, the user may not find the different
tools equally useful because of some inherent limitations. Tool users find it
unacceptable to be restricted to a single-vendor tool suite due, in par, to these
limitations.

The single-vendor aspect also impacts the level of flexibility in a toolset from
which a user can benefit. lf a vendor allows a user to modify the interfaces/objects of
such a nonstandard toolset, it could very well further widen the "compatibility gap" with
other (vendor) tools. Even if conversion capabilities are developed to allow a
database/interface to be adapted to a standard format, the ultimate responsibility for
adapting the modifications may well be left to the user.

There are also problems inherent in the use of relational databases as the basis

of a software tool data dictionary (Brown, 1989; Chappell et al., 1989). Relational
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databases cannot readily accommodate the flexible complex object/data types (e.g.,
code segments, design diagrams, user processes) requit"ed by CACE technology.
They are also generally unable to handle the amount of data that it takes to implement
a fine-grained object management system (i.e., objects composed of data items and
interrelationships that are more compiex than the level afforded by a singular file or
character string representation). The problem here is one of data size and
performance characteristics. The net result is that: (a) users are left with a single,
limited view of the data objects and (b) users find it difficult to share data objects
among the tools.

This recognition has spurred many vendors to publish their too! interfaces as a
. means of promoting greater acceptance from the tool user community (Gibson, 1989;
Wasserman, 1988). While this helps users (and other vendors) interface their own
tools with the tools of a specific vendor, it fails to address the larger problem of data
incompatibility among tools.

Efforts are currently underway to expand the integration of object-oriented
databases (OODB) with tools. An OODB is the basis of next-generation "repository”
products currently under development by both IBM and DEC. OODB differ from
relational databases in that they store data maintenance and access rules along with
the object data. This technology would provide extended capabilities (e.g., multiple
object views, modifiable rules, and object types) and would enhance the
distribution/performance aspects of a shared data dictionary (or repository). Universal
acceptance of OODB technology is impeded by the fact that the technology is relatively
new (no single data model) and by the prior commitment to relational databases of
many vendors, users, and standards organizations.

External Integration. "External” integration pertains to the integration of tools
from one vendor or with those of another vendor. This integration is usually in the form
of "access control” and/or "data control." With "access control,” the tools of one vendor

can be invoked by tools from other vendors. The tool invoked returns appropriate
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messages/codes to the inVoking process/tool. With "data control,” external tools are
allowed to indirectly manipulate the data contained in the internal dictionary of a tool.

Due to the deveiopment of proprietary interfaces, most vendors cannot readily
interface with other vendor databases. Not only might the format of the data be
different, but the contents of the dictionaries may be inconsistent. The weaknesses of
relational databases are also exacerbated with objects are transformed. Since data
rules are imposed by the tools (as opposed to the database), the consistency of
objects (the "view") may well be distorted as semantic content is lost/misinterpreted
when moving data between tools.

Another problem with external integration directly underlies the importance of the
selection and acceptance of standards. The integration of the tool/data interfaces from
two different vendors is a costly proposition that includes both the indirect support and
maintenance associated with the tools and interfaces of both vendors. Ultimately,
given the current state of standardization efforts, the end users themselves may have
to act as systems integrators and write the code necessary to effectively integrate a
tool from different vendors. This assumes that tool interfaces are well documented and
that the user can afford the integration of time/cost.

Work is currently underway by IBM, DEC, and others to define a central data
repository that would take steps to solve the data incompatibility issue (3, 27). A
repository is a comman shared database that stores the rules (or relationships)
associated with tool data objects. The data may either reside in the repository or be
distributed throughout an application network.

Environmental Integration. Basically, tools are t'ad to their environment through
the host operating system or hardware platform. The tools may use specific features of
the operating system or support toolset that are unavailable on other systems (e.qg.,
windowing system variants, Unix system variants). This makes it harder (and in some

cases impossible) for these tools to be rehosted to other environments.
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There are also the problems associated with scalability when considering a
move from one environment to another. Some tools might experience performance
degradation or bump up against environment constraints (e.g., memory requirements,
CPU characteristics, data storage facilities). Tools developed for a single-user PC
environment may be unable to support multi-user projects because of concurrency or
project/data size requirements. For example, it may be impossible to run muitiple
instances of the tool or the tool may be unable to handie the increased data access
requests.

Another environment-related issue is that of tool integration with a configuration
management system. No viable tool offering (regardless of the scope of the tooiset)
can overlook the importance of maintaining an ordered version control history for data
objects. Some tools integrate a simple versioning scheme for file objects, but the
concept must be extended to include all data types as object granularity becomes finer
than the file level and as source code becomes more a "derived object” as opposed to
a central entity. Extension of tools to include configuration support must be given
careful consideration so as not to trigger scalability problems (particularly data storage
and performance limitations).

One possible solution to the environment integration issue is the emergence of
a standard for the Unix operating system. Unix has been showing promise as a
"cross-over" operating system catering to the needs of both the technical and
commercial markets (Cortese, 1990; Cureton, 1988). In this respect, tool vendors
would be relieved of the burden of maintaining separate product lines for muitiple
operating systems by targeting the Unix system. This would also alleviate many of the
rehosting issues facing the vendors as product porting would become solely a
hardware (Unix system platform) issue. Environment integration and tool/database
distribution would be greatly enhanced through the accessibility of existing network

support functions (e.g., NFS, TCP/IP).
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Process Integration. In anticipation of smoothing life cycle process transients,
software tools are being developed to help combine the various phases of the entire
life-cycle (e.g., project management, analysis and design, configuration management).

The Integrated Project Support Environment (IPSE) offerings allow for tool data,
control, and presentation integration (Figure 6). Data integration refers to the
coordination of access to the underlying tool database(s). Control integration refers to
the coordination of access to the toois themselves. Presentation integration refers to
the coordination of the user interface. The basis of data integration is the repository.
The basis of control integration is the software "backplane” or executive that provides
the requisite interfaces to the different tools. IPSE allows for mixed operating system

support and, in some cases, for mixed platform support.

Insert Figure 6 about here

A key issue in process integration is that of tool flexibility. Users demand that
tools be easily modifiable and customizable to their particular needs. Most tools
remain closed to such customization. Those that claim an "open" interface generally
allow modification of merely the presentation characteristics. For tools to be fully
integrated, users must be able to modify the characteristic behavior of the tool (e.g.,
design rules, object rules, object types, process), not just the user interface (Forte,
1989). Users should not have to abide by a strictly imposed process for software
development (e.g., waterfall model, spiral model) if they are best served by some
internally developed or hybrid process.

Another key problem is that most tools support only very specific design
methodologies. Also, the methodology supported by the tools is usually strictly
enforced. Consequently, the users have to select and learn a new methodology or
choose from a limited set of tools that support their current methodology. In the interest

of accommodating in-place methods and procedures, tools need to be able to expand
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beyond the traditional "bottom up” or "top down" design approaches and allow
configuration modifications 10 support alternative ("middle out”) methods.

Another term used in the tool integration arena is "framework.” Frameworks are
essentially tool backplanes with a tool management executive. The executive handles
the overhead involved with coordination of the tool suite (e.g., user presentation, tool
registration and instantiation, error reporting). At the bottom end of the framework is a
common data interface/repository, messaging system, and operating system services
manager. These interfaces unburden the tool modules of the particulars of the host
environment and allow for a broader, more interchangeable product set.

User Integration. The concept of integration with the end user ranges from
something as simple as maintaining a consistent user interface to something as
complex as providing support for an expert system interface. In particular, a
standardization (also known as presentation integration) could help enhance user
acceptance of tools.

One of the basic concems of tool integration tools in general, is the issue of a
consistent user interface/presentation (Forte, 1989; Phillips, 1989). The learning curve
associated with adopting a new tool is steep and requires a significant investment on
the part of an organization that goes well beyond the cost of the tools. It involves the
time and cost of comprehensive training and support (both from the vendor and from
the users). Standardized user interfaces and tool function could help keep these costs
under control as well as offer greater tool/choice flexibility to the users.

In addition to the underlying system, user interface consistency is also
becoming a key issue to tool vendors. The user interface contributes significantly to
the acceptance and learning time for a product. it would seem that the user intertace is
the easiest of the integration areas on which to standardize so vendors must use
caution not to promote a "quick and dirty” solution. If the vendors do not carefully

analyze the requirements of the user interface without taking into account the context
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of the tool usage, they may end up with an interface standard that promotes
consistency at the expense of ease of use.
Figure 7 shows a full IPSE model that "pulls together” all the components of a

tool environment in a single framework architecture.

Insert Figure 7 about here

Technology Introduction Strategy

As with any new technology, the introduction of concurrent engineering
methods and, more specifically, computer-supported collaborative work (CSCW) can
be expected to face some degree of resistance from users despite the potential
benefits.

Gould and Lewis (1985) recommend that "early in the development process,
intended users should actually use simulations and prototypes to carry out real work,
and their performance and reactions should be observed, recorded, and analyzed"
(p.300). This is all the more significant for CSCW because of the added task
complexity. When the development cycle involves individual users performing single
tasks (e.g., using a spreadsheet application), design errors emerge relatively quickly
because the interactions are limited to one person and one system. However, when
the system supports the cooperative work of multiple users, a higher level of
complexity is involved. Interactions among multiple users create a set of inter-
dependencies not found in single-user systems. As a result, design errors emerge
more slowly and are more difficult to pinpoint. Additionally, there is a greater
opportunity for unintended effects, some of which may not appear for a long time! We
plan to exploit this performance-based analysis approach in facilitating technology
transition.

Also, human factors will play a significant role in ensuring the acceptance of

CSCW. For small scale implementation, the guidelines for implementation, and
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products/training courses in support of the implementation process, will be instituted.
For large-scale implementation, we may provide on-site consulting which may prove to
be cost-effective. Geirland (1986), recommends including seven strategies in large

scale implementation efforts (Table 4).

Insert Table 4 about here

Antonelli (1988) suggests that design decisions are more sound when based
on input from real users. In this regard, the identification of cooperative work modes is
useful for developing CSCW/CACE tools. We intend to adapt the taxonomy of
cooperative work styles (Johnson-Lenz and Johnson-Lenz, 1982) for teleconferencing

for our program. The key elements of the taxonomy are summarized in Table 5.

Insert Table 5 about here

In light of the foregoing considerations, we have identified the key elements of a
successful approach to technology introduction in IRFPA manufacturing environments
that is grounded in the key concepts summarized in Table 6. Each of these key

concepts are discussed in the following paragraphs.

Insert Table 6 about here

Start Small, then Expand

Taking on the total manufacturing environment as the target environment is
much too big a task. Our approach is to identify high payoff targets of opportunity for
the insertion of CE methods and tools. This approach not only makes the problem
tractable but also gives some evidence of where to set our sights next. Successful

insertion of CE within certain key processes while exploiting the natural parallelism
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that exists in various tasks will allow us to generalize the lessons learned to some
extent to include othér assembly and integration function. While we intend to "start
small,” we do so against the backdrop of the "big picture” to assure relevance and
design impact of our products.
S | Series of D rati

A key theme of this effort will be staging a series of demonstrations against the
backdrop of the "big picture” to showcase technologies, applications, and evaluate
work in progress. The demonstrations will include: proof-of-principle demos (e.g.,
process models), concept of operation demos (e.g., computer-supported collaborative
work), tool usage demos (e.g., data base generators, and LAN generators),
"interoperable” tools demos (e.g., assembly, and support tools with integration support
tool), process visualization demos (e.g., graphical user interfaces), and simulations of
integrated factory subprocesses (e.g., DEWAR assembly).
Indoctrination of End U

Given the heterogeneous nature of the design team, and the fact that
introduction of concurrent engineering is not just a change of approach but a change
of culture, it is imperative that the "end users” be provided with the "big picture” along
with the specific objectives and their respective roles in the design process. Without a
shared conceptual mode! of the end dbjectives, and preparation for change, the
process of overcoming user resistance can be truly formidable. At the level of
individual tools, it is equally important to show end users how the tool fits in or is
different from the status quo.
Storypoarding

The objective of the storyboarding phase is to develop a set of sequential static
interface screen layouts corresponding to the preliminary concept of operation of a
tool, a device or a subsystem (Madni, 1988). These series of screens with appropriate
textual and pictoral annotations serve as the basis for communicating the systems'

functionability to potential users. Specifically, the screens serve to communicate to the
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user what the tool/system does versus what the user is expected to do. Storyboarding
provides the first indication of the level to which the tool/system can be expected to aid,
train, or off-load the user. In addition, the initial screen compositions become a point of
depatrture for soliciting user comments on improving the utility and composition of the
screen layouts -- the user identifies missing information and/or all information
elements that are best presented as exceptions instead of rules. At this stage users
can indicate the specific types of help and/or software alerts they prefer as they "walk
through” the tool/system storyboards. In sum, storyboarding serves as an effective
means for specifying interactive software operation. Prototyping efforts can start once
all pertinent user comments are incorporated into the storyboards.
Hori 1P .

This particular prototyping strategy pertains to the high-fidelity replication of the
user interface of the final system with simulated functionality and times (Madni, 1988).
The purpose of horizontal prototyping is to provide a vehicle for identifying
shortcomings and errors in user-system interactions. Insofar as CE tools are
concerned, these deficiencies are in the form of missing or extraneous information,
inordinate time delays in user-system interactions, suboptimal windowing and screen
layouts, and so on. Horizontal prototyping greatly enhances the tool's overall usage
concept and supports early demonstrations of the evolving functionality of the tool.
Vertical Prototypi

Vertical prototyping is the high-fidelity implementation of selected functions for
user examination and feedback. The purpose of vertical prototyping is to define and
implement in detail those functions are are important to overall system operations and
for which user inputs are critical to improving system implementation (e.g.,
assumptions, algorithms). Horizontal and vertical prototyping can often be done

concurrently with the resuits presented in the same demonstration (Madni, 1988).
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Exploitation of In-place P I { Tool

One of the key concerns in the introduction of CE methods, practices and tools
is that one does not disrupt ongoing activities and working in-place procedures. To
this end, an analysis of procedures and tools in use within the manufacturing
environment should be undertaken and a view to tailoring the introduction of CE, to the
extent possible, to either subsume these procedures and tools or be compatible with
them.

End Users Involvement in all Phases

A key concern in the introduction of new technology is user acceptance. To
bias the odds in this area end users should be invoived as key contributors in all
phases of design. This strategy will not only increase user acceptance but, in fact,
highly effective solutions may very well come from end users who have an informal
database of lessons learned.

CONCLUSIONS

CE has emerged as a new way of doing business in the design and
manufacture of new products. While CE has been accepted in concept, the full impact
of CE can only be feit when all the enabling technologies and tools are in place. This
paper discusses collaborative design environments, process modeling and simulation,
human-machine integration, interactive muiti-media technology, and computer-aided
concurrent engineering tools and their integration -- five key technological
components that must be implemented prior to successfully introducing CE
approaches, practices and procedures.

Collaborative design environments are key to supporting teamwork but some
technical hurdles (e.g., the problem of sharing design objects) have to be overcome.
Process modeling and simulation potentially provides members of the design team
with the ability to "look down the line” while still in the conceptual design phase.
However, modeling, integrating, and displaying all the different "flows" in a

manufacturing enterprise without overwhelming the users continue to be a major
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challenge. A systematic methodology for Human-Machine Integration is key to

successful human-machine performance. The suggested simulation-based approach

to human-machine integration is both methodical and cost-effective. Interactive muiti-
media technology holds great promise as a motivator and a precursor to the required
cultural change. The specification of a computer-aided concurrent engineering

(CACE) toolkit that spans the life cycle of the product will not only reduce designer

time-on-task, but also provide an audit trail of design decisions and "lessons learned”.

Tool integration continues to be a major challenge but with the emergence of

standards, this problem should become more tractable than it is today.
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TABLE 1
Desired Characteristics of Process Modeling and Simulation

« Accept several kinds of inputs for factory simulation including:
graphics; high-level language declarations; and program modules written
in specific languages

» Combine visual formalisms with executable specifications

* Provide default description of various processes/subprocesses

» Permit explicit description of the key flows and parameters:

— People . .. o
—~ Authority allows description of the organizational model
— Parts

- Tools _

— Inf on basis for a managerial model

- Cost n

» Allows people/models to be included at various levels within the simulation

* Automatically generate data bases, local area networks and process control
software

» Allow systematic application of "downstream" constraints in a "what-if"
design process

» Allow progressive top-down refinement of the simulation (higher and lower
levels) and supports bottom-up integration (from lower to higher levels)

* Integrate with the rest of the enterprise, thus allowing

— The concurrent design team to test the manufacturability and
cost-effectiveness of the design

— The factory personnel to integrate the different tools in their
ongoing operations
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TABLE 2

The Simulation Continuum from A Human-Machine integration Perspective

Voice

Animation

Digitized Voice

Analytic 1’.“:"‘.‘: “"’g“?“"“' Networked
Simulation Simulaton Simulator Simulator
« IRFPA Manutaciuring | + Manufacturing « Layout optimizasion 'MJ‘""‘""
Goal process statondiepley _ _ | - Physicaicontoisand |  manufacturing plant
* Modeling (user *Operabremorand ~ 1 dsplays prowtyping | + C3 training
orsecve)_ _ ., || omorramsassesement ||(T e 1| Coordination erors |
I- Function allocation 1 |j+ Subjective workicad th . 1. co L i
I+ information analysis | || analysis * Stimuius - response mmuricaton
b e e = = = = J|I compatiiity I |1 and coordination i
|- Woridoad analysis | ——mm-- \load analysis .
= ooacanayss _ | acanayes_ _ _
e.g., discrets-event 0.g., discrets-event Man-in-the-loop selective computational
simulation simulaton Part-task simulator fidelity in M-I-L simulation
Operabr Canonical Designer/Analyst :
Representation |  rje-based model plays the operator Designer/Operator Operator
Fidelity « Informational « Perceptual « Physical « Informational
Avaiable « Functional * informational * Anthvopometric (external and internal)
* computational (internal and extemnal) | - informational » C&D level
(selective) « Display {imemal only) » Physicat
* C&D level « Computational
« Anthropometric
« Environmental
Moderate - High

promote human-machine relations (cultural change)

embedded help and examples in workstation usage and
architecture / design tasks

footage of typical component assemblies, fab line

interactive modeling and design of product and process
(physical abstraction, symbolic metaphor)

primary medium of communication among participants

display of resuits (e.g., bar charts, pie charts)

dynamic process simulation, alerts in testing, constraint

violations

constraint violation alert in hands-free operator environment

remote teleconferencing with live video support

FIGURE 4 Interactive Multi-Media Components and Usage
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TABLE 3

Key Capabilities of Interactive Platforms

Categony VD CD-ROMXA bvi CD+ CIG OpticalDisc Tape

Storage Capabillity
« Massive Size XXX xx XXX XXX XXX XXX XXX
+ Data Access ° x X x xx °
- Data Reliability xxx XXX xxx XXX xx XX
* Read / Write - - - - xx x

Multimedia Storage
« Video xx ] xxx b 4 o X X
+ Graphics o xx XX xX XXX XXX X
+ 3-D Animation o b 4 xX X XXX xx X
- Audio X X XXX xx xXx X x
* Text o X X o o X
- Database o X x o o X X

Multimedia Delivery
* Video xx o XXX X o o °
« Graphics o xx xX xx XXX ° )
* 3-D Animation o X xx X XXX ° o
» Audio -] XXX XXX xx xx o o
* Text . X b 4 o o ] o
» Database ] X o o o

LEGEND;
XXX Eminently suited XX Well Suited XApplicable © possible, but significant drawbacks
~ Not Suited TWrite once read many (WORM)
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TABLE 4
STRATEGIES FOR LARGE SCALE IMPLEMENTATION

(1) Demonstrations of the technology for potential users

(2) Group consensus on the goals for the technology

(3) User participation in development of an implementation pian

(4) Implementation on a trial basis in one area of the
organization

(5) Evaluation of the implementation trial

(6) Revision of the implementation plan (if needed)

(7) Monitoring and periodic review of the implementation effort
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TABLE 5
TAXONOMY OF COOPERATIVE WORK STYLES IN TELECONFERENCING

(1) Individual work versus group interaction.

(2) Anonymity versus signed responses

(3) Feedback of group results versus no feedback.

(4) Aggregated versus unprocessed results.

(5) Voting versus no voting.

(6) Numerical processing versus symbolic processing

(7) Filtered information (selection mechanisms to access only
selected items) versus unfiltered information.

(8) Synchronous versus asynchronous interaction.

(9) Sequenced versus free or unstructured interaction.

(10) One-time access to information versus continuous access.

(11) Patterns of communications: one-to-one, one-to-many,
many-to-many, many-to-one.

TABLE 6
TRANSITION STRATEGIES

« Start Small, then Expand

» Staged Series of Demonstrations

* Indoctrination of End Users

» Storyboarding

» Horizontal Prototyping

» Vertical Prototyping

+ Exploitation of Inplace Procedures and Tools
* End Users Involvement in All Phases
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Assessment of Intelligent Training Technology'

Alan Lesgold
University of Pittsburgh
Pittsburgh, Pennsylvania 15260

Over the past decade, there have been considerable research and
development in applications of artificial intelligence to education and training. In
several cases, training systems have been produced that are receiving practical
use. More commonly, so far, managers are starting to face decisions about
whether a prototype research system has potential utility. In this chapter, | view
the assessment of intelligent training systems from a long-term perspective, and
discuss the different kinds of decisions that require assessment of intelligent
training technology, and a number of specific assessment issues, considered in
light of current theory and experience. In particular, | draw on experiences with
the Sherlock coached practice environment for electronics troubleshooting.

immediate Effectiveness versus Potential

Technology assessment in the world of inteliigent training systems must
consider not only the effectiveness of a training system but also the likelihood that
it can be assimilated by the organizations that could use it. This can be seen
either superficially as a marketing problem or more deeply as a problem in
changing schooling or training. In either case, though, a product must not only be
effective; it must also either fit the existing organizational structure and available
technology or it must be so attractive as to bring about adaptive changes that
make it useable.
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When an artifact is assessed for its immediate utility, evaluation is extremely
straightforward. We try it and see how it works. Sometimes we can develop
quantitative assessment approaches that allow us to rank alternate products. For
example, testing laboratories have mechanical devices that simulate sitting in a
chair and getting up. With such devices, we can count how many sitting/rising
cycles it takes before a chair's springs fail. With a mixture of such tests, we can
develop composite scores that assess the durability of chairs. In other cases,
where more subjective judgements of adequacy are involved, we can ask potential
consumers to rate properties of a product. So, we see ratings of orange juice,
microwave popcom, wine, and other food products by panels of tasters, either
professional or from the lay public. For some products, the effect of using the
product can be directly measured. For example, when testing razors, we can
count the number of cuts received by a sample of razor users and perhaps even
measure the lengths of hair roots left after shaving.

Instructional products are often evaluated the same way. We use the
product and measure its positive and negative outcomes. Usually, this is done by
testing students after their use of a product and seeing whether they do better on
Joal-relevant test items after using the product than after some alternative
treatment. Costs, corresponding to the razor cuts of the preceding example, are
also assessed. Often, there is an explicit comparison of requirements for the
instructional treatment being tested to the available resources in some pool of
representative schools. Other costs, such as teacher preparation time, student
class time, etc., are also considered.

User acceptance is also an important consideration when instructional
products are evaluated. For example, certain textbook series are considered to
have great instructional potential but to be market risks because teachers won't
adopt them. Often, this occurs when a textbook series fails to match current
curricular sequencing, requires significant teacher preparation time investment, or
fails to provide certain aids to teaching that competitors make available. A cost
likely to be associated with a technological aid to education is the investment of
time teachers must make to learn how to use it. A particular problem for
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computer-based systems is whether the computer equipment it requires is broadly
available.

In the case of computer-based consumer commodity products, assessment
must consider user acceptance and installed platform base. Many a product has
failed in the market, even though it was demonstrably better than its competitors,
because it required a different operating system or more memory. More trivial
sources of product failure include complex copy protection schemes, complexity
in providing the right size of diskettes, lack of compatibility of files with extant
products in the marketplace, etc. Clearly, from the standpoint of an educational
product meant for use today, an assessment of the product must consider not only
whether it is effective when used but also whether people are prepared to use it
and willing to use it.

When evaluating an educational product’s potential for the future, these
factors are harder to deal with. The computers that schools have today are
primitive and characteristically inadequate for many of the most exciting
educational technology possibilities.? To restrict positive assessments to software
that runs on such machines is foolish, especially when schools show a continuing
ability to upgrade their resources, albeit slowly and spasmodically, in response to
technological change.® However, it is difficult to predict when enabling conditions
will arise in any market, including the school market. Fortunes have been made
and lost in guessing whether DOS, Unix, Windows, or OS/2 will prevail, for
example. Accordingly, it seems very important at least to understand what
conditions will be required for a promising prototype system to be used and valued,
and it would be extremely helpful to have means of assessing the likelihood of
those conditions arising.

In the case of intelligent training systems, some information is available
conceming the hardware platforms that will be prevalent in the future, and there
is also information about migration tools that might broaden the range of alternative
futures for which a given system might be adapted. For example, it is clear that
Windows 3.0 is a major force in the computer world. Combined with other forces
previously evidenced, Windows 3.0 assures that there will be a relatively large
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population of computers in the business and industry world that have 80386SX,
80386, or 80486 processors; four or more megabytes of memory; and decent
(VGA or better) graphics.

On the software side, much of the research base in artificial intelligence
depends upon Common Lisp running on large Unix work stations. Currently,
delivered systems are often rewritten in C so they will run faster on standard work
stations (major Lisp vendors are working to complete adequate delivery systems
for Lisp that run efficiently on multiple platiorms). Rather recently, Smalitalk has
emerged as a programming language of choice for training system development,
and it is what my own team uses for its biggest and most applied project. Recent
actions in the commercial software world suggest a move toward use of object-
oriented languages such as Smalitalk because they produce software that is more
maintainable. | discuss these issues in more detail later in this chapter.

In the easy case, then, a decision-maker can predict, with a high degree of
confidence, that the hardware and the software architecture required to support a
desirable prototype system will be in place. Often, however, given the
requirements of development, there will be a gap between the hardware platform
for a prototype system and the hardware broadly available in the short term. A
conservative view of the problem of assessing both software quality and the
likelihood of a hardware plant to run the software would be that only software that
makes a striking contribution will succeed in navigating the hardware gap. From
this viewpoint, assessment means a search for evidence that a product not only
is effective but further that it is so effective that it cannot easily be avoided. A
global finding of massive effect, though not particularly informative for product
refinement, provides a basis for predicting that a product will be used, even if it
requires improved hardware. More broadly, the bigger the infrastructural
investment that would be needed to use a piece of software, the bigger the
demonstration of general efficacy needs to be.*

These observations are informed by our own experience with the "Sherlock
Project,” a long-term effot to shape a technology of coached practice
environments for training complex problem solving jobs in the Air Force. Our first
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"product,” Sherock |, while it needed many refinements, did produce the massive
effect needed to assure likely adoption, and led to support for ambitious efforts to
migrate, refine, and generalize the system. Consequently, the way in which we
evaluated it may be worthy of examination. Below, | discuss this project,
especially our approach to assessing it. | conclude by reflecting on some issues
critical to assessment of training technology that became apparent in the course
of the development of Sherlock.

Assessment Experiences from the Sheriock Project

What is Sherlock like? Since 1983, my associates and | have been
developing a technology for training complex problem solving jobs for the Air
Force. The Sherlock Project has been an extended effort to develop improved
approaches to the training of complex job skills, especially training that supports
transfer to new but related jobs. After empirical studies of experts and trainees,
the work has revolved around a family of prototype training systems called
Sherlock. Two generations of coached intelligent apprenticeship environments
have now been built. The first of these, Sherlock |, was evaluated extensively in
the field. Its successor, Sherlock I, is largely a response to lessons we learned
from the evaluations. Sherlock Il includes a simulation of a very complex
electronic device, a "test station™ with thousands of parts, simulated measurement
devices for "testing” the simulated station, a problem selection scheme that
presents fault diagnosis problems within the device simulation, a coach that
provides assistance when help is requested in the course of diagnosis, and a
reflective follow-up facility that permits a trainee to review his performance on a
problem and compare it to that of an expent.

In developing this system, we had a number of psychological concerns. We
wanted to afford opportunities for learning by doing, and this required simulation
of complex job situations, not just small devices. Also, we wanted to tailor the
coaching provided by the system to the knowledge needs of the trainee. Ideally,
the trainee should be kept in the position of aimost knowing what to do but having
to stretch his knowiedge just a little in order to keep going. Consequently, hints
should be provided with some inertia. They should provide enough help to avoid
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total impasse but this help should come slowly enough so that it is easier to think
a bit on one’s own than to wait for the correct next step to be stated completely.
This requires considerable modeling of student capability and may also require
modeling of the course of trainee-machine interaction. Of course, it also requires
expert modeling, in order to know what advice to give.

During the course of difficult work, it is not likely that much extended
learning can take place. Both psychological experimentation (cf. Owen & Sweller,
1985; Sweller, 1988; Sweller & Cooper, 1985) and theoretical models of case-
based leaming (e.g., Mitchell, Keller, & Kedar-Cabelli, 1986) indicate that learning
from task situations requires a lot of cognitive effort. For this reason, we have put
much of the power of our training systems in post-problem reflective follow-up.
After solving a problem, which requires about a half hour of effort, trainees can
review their actions step by step, asking what an expert would do at any point
along the way. Or, they can simply ask for a trace of an overall expert solution.
At each step in either trace, they can receive background information on why the
step is being taken. Also, color diagrams at each step in the trace show what is
known about different parts of the system being diagnosed (parts proven good in
green; paths with incorrect information in them in red, etc.). Much of this capability
rests on the same knowledge structures that support coaching during problem
solution.

Sheriock | ran on a special artificial intelligence work station and was written
in Interlisp and Loops, a proprietary object-based language for Interlisp. Trainees
interacted with the system by pointing to screen-graphic renderings of the front
panels of devices and to schematic diagrams of their innards. Sherlock Il runs on
a standard 80386 machine, requires around 8MB (depending on the version used
and research requirements for data collection), about 20MB of hard disk, a
processor speed of 20MHz or higher, a videodisc player and interface, and a
GENLOCK card to mix the video and computer graphics images. Trainees interact
with Shertock Il by making selections from menus and by pointing to video views
of test station components. For example, to make a resistance measurement, a
trainee would mouse on a screen icon of the hand-held digital multimeter to access
the front panel display of the meter in video, indicate knob settings on the video
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image with the mouse, select the component he® or she wanted to test from a
menu, and then indicate meter probe locations by pointing to a video image of the
component. Coaching advice also is available via the menu system. Sherlock |,
in spite of its more specialized artificial intelligence environment, was much less
intelligent and more brittle in its knowledge than Sherlock 1. In addition, it lacked
the reflective follow-up capability that we now believe to be of great importance.

Basic assessment results for Sherlock I: The massive effect. Sherock Il is
just now being completed. We do have field assessment data for Sherlock |.
Overall, Sherlock | was excessively rigid but remarkably successful. Because the
goal structures for each problem were hand coded and many hints were specific
statements written in advance, the system was not very extensible, and the
interaction between trainee and machine somewhat rigid. However, the bottom
line is that 20-25 hours of Sherlock | practice time for trainees in their first four
years of duty produced improvements almost to the level of their more senior
colleagues who had many more years on the job. In more practical terms,
trainees could not generally troubleshoot test station failures before the Sherlock
training, but they could afterwards. Here is how this conclusion was established.

The goal of Sherlock | was to train the ability to diagnose test station faults,
the hardest part of the F-15 manual test station job. So, we’ used simulated test
station diagnosis problems in the field evaluation (see Nichols et al., in preparation,
or Gott, 1989, for details). Virtually all of the job incumbents at two Air Force
bases participated in the evaluation, a total of 32 airmen in their first four-year term
and 13 at more advanced levels. The 32 first-termers were split into an
experimental and a control group of 16 each. The experimental group had a mean
experience of 28 months in the Air Force, while the control group had a mean of
37 months. The advanced group had about six more years of experience, a mean
of 114 months. The simulated test station diagnosis problems were presented
verbally. An example problem is the following:

While running a Video Control Panel unit, Test Step 3.e fails. The
panel lamps do not illuminate. All previous test steps have passed.
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In such a situation, the unit being tested is usually defective, but in this
particular case, it tums out that a relay card in the test station is bad. This type
of problem is one that is exiremely difficult for novice technicians. In the
evaluation study, the technician would hear the problem statement and then be
asked two questions: What would you do next? and Why would you do that? He
would then be told the result of his action and the cycle of questioning would
repeat until the problem was solved or an impasse was reached. Verbal protocols
of these problem solving interviews were then given to Air Force experts who
scored them blind to the condition assignments of the subjects. Scoring scales
were derived from expert rankings of the problem solving performances using
"policy capturing” techniques (discussed below).

Figure 1 shows the results. Given group standard deviations ranging from
12 to 29, the results show that the experimental and control group pretest means
and the control group posttest mean are at one level and the experimental posttest
mean and the advanced group mean are at a second, much higher, level. The
data were also considered from a second viewpoint, the amount of on-the-job
experience needed to produce gains equivalent to those produced by the Sherlock
experience of 20-25 hours of coached practice. The totality of the pretest data
was used to generate a regression coefficient for predicting months of Air Force
job experience from these test scores. Using the scale created by this regression,
the gain shown by the experimental group from pretest to posttest is equivalent to
about four years of job experience, using conservative estimates, although the
confidence interval for this estimate is necessarily huge, given the small numbers
of subjects. A follow-up testing six months after training showed retention of over
90% of the gains made from pre to post testing. Overall, then, Sherlock was very
successful, in terms of producing the ability to do the specific job of manual F-15
test station diagnosis, which is not readily acquired from simple on-the-job
experience or from the training now available prior to reporting for work.

Interpreting the massive effect. The massive effect of Sherlock is real, but
it requires interpretation. Basically, Sherlock is effective because it has no
competition. That is, it affords opportunities for leaming that were not available
before, either on the job or in the classroom. A variety of logistic and other
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limitations make it very difficult for on-the-job training to be effective in teaching the
hardest parts of the job. When those hard tasks appear, it is often an urgent
situation, in which training opportunities take a back seat to the need to get
equipment back on line. Further, the specific events that would present good
training opportunities with respect to our high threshold criterion are relatively rare.
In the schoolhouse, it is even more difficult to create realistic situations in which
the hardest diagnostic tasks could be practiced, and such practice seems to be
critical to attaining high levels of skill.

When looking at high-end job performance, even in purely cognitive tasks
like fault diagnosis, there often is no substitute for realistic practice. Abstract
principles can be taught in the classroom, but it is rare for those principles to
automatically be applied in the real world without some practice, especially in
situations of great complexity and likely stress. Consequently, one interpretation
of the massive effect of Sherlock | is that it provides practice, under simulated task
conditions, that is sufficient for learning, whereas prior learning opportunities within
on-the-job practice did not. Seen from this viewpoint, the assessment issues that
are raised are somewhat different in character. We consider each of these, in the
context of the Sherlock experience, in the next section.

Issues In Intelligent Training Technology Assessment
Reality and Nature of the Main Effect

The first issue is the reality of the main effect. If one is going to assert that
a system accomplishes a major chore that is otherwise not readily accomplished,
this needs to be backed up. It is necessary to show that the system produces
levels of competence that are worth more than the levels of competence achieved
without using the system. At one level, this was easy. We could document the
costs of not having technicians who could troubleshoot test station failures, and we
were able to show that after Sherlock training, technicians could handie problems
that they could not handie before. Since the Air Force was hiring civilian experts
to stand by to assist uniformed personnel when test station faults occurred, the
costs could be documented. However, we feel it important to have a quantitative
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documentation of the training outcome as well as of the monetary value of the
training. That is, we wanted to have quantitative scores of performance in the test
station troubleshooting tasks whose value we had established.

To get this, we had two basic options. On the one hand, we could list a
number of properties of good test station troubleshooting activity and then score
troubleshooting episodes for the presence or absence of those properties. For
example, making measurements instead of swapping components is an important
property. We could decide arbitrarily to subtract some number of points from a
person’s score for each action required to solve a problem, charging more for
swapping than for testing. Further, we could almost certainly reduce the costs to
doliars. Each action takes time, which has measurable cost, and swapping a good
part generates a variety of measurable costs. Depleting an inventory has at least
indirect costs, since the inventory must be kept higher if such depletions must be
anticipated.

It is also important to note that Sherlock | was based upon many design
principles, some of which were enumerated above. Which design principles have
what effect on the various possible outcome measures is difficult to establish. One
implication of this difficulty in isolating the mapping of treatment parameters to
effects is that once a main effect is established, detailed parametric research may
be justified. In the case of Sherlock, the initial results have motivated support for
just such a program of research, which is just now beginning in the context of
Sheriock .

Transfer

On the other hand, we could have experts evaluate the performances of
those who did or did not use the system, and then compare their ratings. At first
blush, this seems considerably less satisfactory than the quantitative approach just
described, and it would be if we were concerned only with immediate costs and
performances. However, if we want to predict transfer to systems that may not yet
exist or that may not be available for testing, especially when predictive studies of
transfer may not have been carried out for the knowledge domain, then it may be
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necessary to rely on expert appraisals of competence. Expert judgements have
known shortcomings. In the military context, it is not unusual for staff who are
cooperative to be valued over those who are not, independent of their expertise,
for example. With respect to changes that we expect a tutoring system to
introduce, such social factors represent error variance in an evaluation design.

The Air Force worked with us to find ways to use expert judgements to
derive scoreable properties. Nichols et al. (in press) applied techniques of policy
capturing to develop scoring schemes for the troubleshooting task we used in
evaluating Sherlock I. The basic scheme is very straightforward. Difficult
troubleshooting problems are posed verbally to the testee. Testees call for various
actions to be performed in solving the problem. Results of each action are
provided to the testee. A trace is kept of all the activity of each trainee in solving
each criterion troubleshooting problem. Experts are asked to examine the traces
and to rank order them. Then, they are questioned about the bases for their
rankings. From this questioning, one derives a list of features that contribute to
judgements ot expertise. The next step is to assign point values to each of these
features, so that they can be used to set a score for the trainee. Finally, the
scoring scheme thus developed can then be used to score additional performances
by the same or other test subjects.

Setting the point values for each scoring feature can be done several
different ways. One approach is to set the point values to best predict the rank
orderings assigned by experts to the whole performances. This is a common
strategy and generally involves regression analyses. The strategy makes sense
if we assume that the experts are making their holistic judgements solely with
respect to issues of expertise we care about. Sometimes this is not the case. A
second approach is to analyze the features cited by experts and to evaluate them.
This can be done both empirically and theoretically. Empirically, it is possible to
do clustering analyses of the scoring features. Once clusters are identified, some
amount of theorizing is required to decide why certain features cluster. This may
result in a decision that some features are good indicators of important job
knowledge while others are mainly generic indicators of being "good soldiers.” For
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example, following recommended troubleshooting sequences religiously may be
highly valued but may not correlate with indicators of deep domain knowledge.

One issue that arises when the policy capturing approach is used is that
there is potential loss of explainability for scores. Saying that a trainee got a high
score because he did things that experts value highly is not quite as satisfactory
as saying that the high score came because performance approximated that of an
expert in identifiable ways. For this reason, we are moving toward a modification
of the pure policy capturing approach. We are now experimenting with an on-line
evaluation scheme in which our expert mode! directly tallies various indications of
expent-like and non-expert-like actions. These tallies can then be used in two
ways. First, they can be summarized in ways that match the abstractions implicit
in the expert model’'s goal hierarchies for performance. Second, regression
analyses® can be done to predict human expert judgements of overall
performance from the more microscopic objective tallies.

Nichols et al. (in press) probed for data beyond problem solving steps. Test
subjects were asked to explain each step that they were taking, to indicate
expected outcomes of tests, and to comment on what was learned from each new
piece of information (such as a measurement made on the circuit). This approach
was useful in providing information about performances that had high face validity.
People who offer principled explanations for their problem solving actions and who
solve the problems efficiently are certainly candidates for good transfer
performance. On the other hand, the very requirement of explaining steps that are
being taken may produce performances that are more systematic, and even more
generally expert, than otherwise would occur. The requirement to explain one's
performances is a significant intrusion into task performances. So far, there is no
indication that it distorts results, but further study seems advisable.

Overall, it seems well advised to ground the evaluation of a training system
in performances of difficult jobs from the target task domain.
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Mode of Presentation

In the first field tests of Sherlock |, some people in our client organization
objected to using computer-administered problems for assessment, because the
training program provided practice in using our computer system as well as job-
specific practice. For the most par, this objection is attenuated as the evaluation
becomes more heavily grounded in details of expert-like performance. Still, it is
surely possible that a testee unfamiliar with the interface might appear to be
performing less optimally than would otherwise be the case. For example, it is
possible to "miss” in making choices from a pop-up menu, and such a "miss"™ might
result in a tally of a non-optimal choice during problem solution. Of course, the
verbal problem simulation approach we have used so far in field evaluations is also
problematic, since it requires trainees not only to be able to soive problems but
also to be able to articulate their decision processes. However, the biases due to
verbal aptitude requirements when verbal simulations of problem solving are used
apply to both experimental and control conditions, while the biases due to
computer-administered simulated problems apply only to the experimental group.
Accordingly, we recommend that post-testing not be done via computer unless
both experimental and control subjects are well trained in the interface.

it can still be useful to use the computer for administering and scoring the
problems, however. The experimenter can sit at the computer and enact each
action of the trainee. Also, by modifying the system to accept annotations along
with actions, it becomes possible to log the trainee’'s explanations along with the
trace of actions. A major advantage of this approach is that testing need not be
done by a domain expen, since the system simulation in a training system like
Sherlock will be able to provide the result of every action the testee proposes. In
earlier field work, we occasionally had testees call for an action whose resuits the
tester could not determine. Since some of our testing was done on third shift, this
meant that an expert had to be phoned in the middie of the night to determine
what meter reading to report back to the testee in response to the action
proposed. Given that systems like Sherlock contain verified device models, a
tester could use those models to guide his or her interactions in verbally posed
problem sessions.
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Ideally, systems will be developed for multiple jobs in a “job family." Again,
once testees are familiar with the basic interface conventions used for a family of
training systems, the systems themselves make good testing and data logging
systems. Transfer can be assessed by noting the trajectory of performance over
training sessions for both original training on one system and transfer training on
a second. Given proper counter-balancing of order of training, it is possible to
quantify transter in terms of time (and its monetary value) saved in learning the
second system given training on the first. Again, there are objections to using the
training system as an assessment vehicle if prior experience with the interface is
not controlled, and again the systems may make good examiner stations even
when testing is done via verbal interactions.

Assaessment Advantages of Object-Based Approaches

Object based design has power that is making it the standard in the
software development world. For the very same reasons, object based design
may be key both in training for transfer and in assessment of transfer potential.
More generally, intelligent training systems offer a peculiarty good opportunity for
achieving synthesis of learning and assessment, which has been widely advocated
as a goal for education and training generally.

The expertise in systems like Sherlock Il is represented in computational
"objects." An object is an independent piece of computer program that stores its
own local data and can thus respond to various requests that other parts of the
system might make of it. Knowledge about how to deal with specific components
of the system being diagnosed is embedded in the objects that represent those
components. For example, a component in a system will be represented by an
object, and component objects will have routines relevant for the objects they
represent. The object for a given component, such as a particular type of printed
circuit card, might "know" how to draw the component it represents on the screen.
it also will likely know how to model its component as part of an electronic circuit,
how to test that component, and how to coach the trainee in his interactions with
that component. Since most training systems will do some sort of student
modeling, the object for a component also needs to know how to record the
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student’s interactions with that object, how to score those interactions, and how to
make the recorded information available to other parts of the system that might be
generating more abstracted evaluations of the student.

Further, objects are generally arranged in an inheritance hierarchy to
facilitate system development. General objects are defined that have basic
capabilities. When more specialized capabilities are needed, new objects are
created that inherit general capability from their "parents” but add to that some
specific functionality. For example, ali component objects may need to tally the
-time of each action taken by a trainee that involves the component within their
"scope.” The time tallying routine would, in a good object-oriented programming
system, be defined only once, for a general component object, and the routine
would be inherited by more specialized objects that also require it.

At a higher level of expert function, a level that abstracts over specific
components and even types of components, expertise is represented as a goal
structure for problem solving. In our approach, a task analysis will lead directly to
specifications for the computational objects to be used in training systems. The
goals of training are represented by objects, and those objects, too, must be able
to perform, coach, and illustrate their specific bits of expertise. Further, they, too,
can be readily modified to keep track of how well the trainee approximates
expentise in his or her performance.

A goal hierarchy represents one kind of abstraction of expertise, but there
is also another kind. The concept of an inheritance hierarchy of knowledge, which
is central to object-oriented programming (though lacking in some partial object-
oriented programming languages!), also has potential for the prediction, training,
and assessment of transfer, both potential and actual. This is especially the case
when specialized objects do their work through a combination of a few specific
actions combined with a "call" to a more generic routine. | currently believe that
analyses of multiple jobs for transfer should resuit in products that specify
inheritance hierarchies of knowledge components. Further, | believe that transfer
can then be predicted by noting the relative amounts of knowledge that are shared,
that require only minor specializations of what is already known, or that require
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major new learning. | am currently trying to refine such an approach to task
analysis.

Given the decision that task analyses will lead directly to specifications for
the computational objects to be used in training systems, and given the scheme
of having those objects able not only to simulate expertise and train, but also to
assess trainee performance, it is a small step to systems that can assess transfer
potential as well as job-specific learning as they train. The step entails objects’
contributing to decisions about transfer.® For example, if there are cases where
performance from the viewpoint of a specific object is expert-like, while
performance from a more general viewpoint is not, this may indicate that the
trainee has learned a successful algorithm that does not adequately generalize.
Such an indication would count against any claims that the system teaches for
transfer. For example, when a technician tests a component by verifying its inputs
and then verifying its outputs, or vice versa, he is exercising a general capability
that should transfer to many components of many systems. If instead he traces
those input-to-output paths that are relevant to a particular situation, he will still be
able to decide whether the component is good, but his performance does not have
the same guarantee of transferability.

Architectural aspects, and in particular use of object-based approaches, are
considerations that should enter into assessments of software for integrated
training and testing.

Durability of Effects

For the effects of intelligent training systems to be worthwhile, competence
must not only develop and transfer, it must also persist. Training that is durabie
is much more valuable than training that requires regular "maintenance.” While
complex, time-sensitive performances inevitably require maintenance, basic
competences generally should not, provided that they have been adequately taught
and learned. Still, the training world is replete with courses taught, exams passed,
predictable and over-rehearsed performances carried out, with minimal long-term
effect. Consequently, we felt it important to do retention testing of the Sherlock |
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system. In fact, retention was extremely high, in excess of 90%. Further, it was
relatively uniform--few trainees showed precipitous drops in performance. We
think such demonstrations are important, given the cost of intelligent system
research and development.

Just as with transfer, it would be helpful to have predictors of retention.
However, the development cycle for intelligent training systems is long even
without adding extra months to separate initial from retention testing. | propose
that instead, once a particular technology for training system development is well
established, it would be possible to predict retention from the many micro-
measures of competence that are used for assessing competence and transfer
potential. In the Sherlock work, for example, if retention rests on conceptual
understanding, then those specific performance indicators that depend upon
understanding the device being diagnosed and the methods of diagnosis should
be good indicators of retention. If understanding plus efficiency of certain basic
cognitive processes is needed, then indicators of both should be good predictors
of retention. We did not conduct the needed analyses to support this approach
when we field tested Sherlock |, but we expect to be able to with Sherlock Il.

Predicted retention is not the same as actual retention, especially when
prediction formulas from one training system’s history are used to estimate likely
retention for a different system, but it is a start. To the extent possible, predicted
retention measures should be supplemented by actual measures, at least on an
occasional audit basis. However, predicted retention is an important aspect of
assessment, especially because of the increased emphasis on rapid prototyping
and more efficient development of computer-based training. Just as with
conventional training approaches, it is always possible to audit performance with
the system already in place and in use. Predicted retention would allow first
tryouts of the system to be more informative, so that sound deployment decisions
could be made earlier in the development cycle.
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Boundary Conditions

Like any treatment, intelligent training systems will work only within certain
boundary conditions. However, assessments of training seldom attend to
boundary conditions. It is common to provide background data on the sample that
was used to assess system capability. However, users are generally left to make
their own inferences about how and when results from that sample might
generalize. Some improvement over that state of affairs is possible and important.
Consider the field testing of Sherlock |, for example. It was tested at operational
Air Force bases, not at the training school. As a result, it could be assumed that
a variety of basic electronics principles and procedures had been mastered by the
test sample. Otherwise, they would not have been allowed job site roles. On the
other hand, because they were on the job, they had daily concrete experience with
the artifacts being simulated. It is conceivable that Sherlock | might not work well
in the tech school environment. On the other hand, the scheme in which coaching
is always available, so that true performance impasses are unlikely, seems rather
robust and might be sufficient to permit a much wider range of trainees to use the
system effectively.

From a research and development point of view, it seems appropriate to
conduct, for each new design approach to intelligent training system design,
specific studies of the boundary conditions under which the system works. This
is not too unreasonable. It simply means keeping records and analyzing for data
patterns as the first implementations of the approach are carried into broad use.
Then, if boundary limitations emerge, they can be considered by future users.

Related to boundary conditions are interactions between components of the
instructional treatment and trainees’ prior knowledge. Consider, for example, the
range of treatment possibilities present in Sherlock Il or being considered for future
versions. These include practice in solving problems presented according to a
fixed progression, a student-model-determined progression, or a student-request-
determined progression; opportunities to replay one’s own or an expert solution to
the problem just solved; opportunities or requirement to critique one’s own, or a
peer’s, performance on a problem; and opportunities for any of the above activities
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as a member of a cooperating peer group. It is quite possible that some of these
learming opportunities might work better for one type of student while others might
work better for another. For example, there may be some threshold of domain
knowledge that is required before one can frame effective questions about an
expert performance. If so, then students yet to reach that threshold may not find
opportunities to replay problem solutions and ask questions about them to be very
helpful. A second possibility is that some students may have more successful
practice with one or another of the approaches and therefore value it more.

Although much about the effectiveness of training approaches for trainees
with differing prior knowledge remains to be elucidated, it seems appropriate for
an assessment of a training system to consider what is known, and to take such
information into account in interpreting the adequacy of the test samples used for
evaluating the system. A further step is possible when a system records a detailed
trace of system usage by the student. Then, it is possible, by examining the
course of learmning for specific members of the test sample, to use extant
knowledge to make predictions about interactions of prior knowledge with
treatment, and to proceed to partial verification of those predictions.

Maintainability and Extensibility

In addition to its utility in promoting learning, an intelligent training system
must also be evaluated as a technological artifact. Too often, the process whereby
training software is procured results in systems that cannot be maintained or
extended. Initially, it will seem to the system purchaser that if the system works,
there is nothing else to worry about. However, virtually all training systems require
modifications over their lifetimes. Weaknesses in the training are discovered.
Devices that are part of the task domain are modified or replaced. New duties are
added to the job. New trainees, with different entering capabilities, become part
of the training population. All of these things happen routinely in the training world.

The requirements for maintainable software are weli-known. The software
must be modular, with each module carefully documented. Detailed explanations
and specifications of how the system works, and why, should be available.
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Standard computer languages should be used and only standard hardware should
be required. We have found that a deeply object-oriented approach helps greatly
in maintaining and extending software; indeed, we have had to rewrite virtually all
code that did not reflect deep understanding of object-oriented practices.

Good object-oriented designs make use of inheritance, so that each
knowledge component of the system is defined only once. This facilitates repairs
and changes. In the object-oriented paradigm, actions are taken by passing a
message to the object that is to act. When, in contrast, actions are taken directly,
whenever a change is required, each instance of such actions must be detected
and modified. This is very costly. Good object-based design, therefore, enhances
productivity immeasurably. For example, having developed software that could
display electronic circuit diagrams, with color coding of component states and
explanation of components when their diagram representations are "moused,” our
main software designer, Edward Hughes, was able to build a new system for
inputting, displaying, and allowing interactions with troubleshooting flowcharts. He
simply made a "flowchart editor object" that inherited most of its capabilities from
the same "graphic editor object” that supports the "circuit editor object" he had
programmed earlier. At a more mundane level, when | wanted to build a database
of hints generated by Sherlock, all | had to do was modify the "hint display object"
to dump all text to a file in addition to sending it to the relevant text window pane
object.

Just as with any system, the learning time it takes a user to use a software
development approach must be considered. Experience to date has been that
object-oriented programming skill takes a long time to train--three to six months for
a top-notch programmer with good formal computer science background.
However, even at that high cost, the approach pays. From a software evaluation
viewpoint, use of good object-oriented techniques, including the representation of
core design principles and approaches in separable objects, makes a training
system much more valuable, and makes changes in the system much more
efficient. Moreover, "user” acceptability is very high. Our experience, with several
different object-based languages, suggests that it would be difficult to wean
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software developers away from an object-based approach once they have
practiced it.

Conclusion

The approach | have taken in this chapter is to view training system
assessment from a long-term perspective. Therefore, | have assumed that transfer
and retention, not just immediate rote performance of algorithms, is the key to a
system’s value. Similarly, | have assumed that modifiability and principled design
are also highly to be valued. Surely, there are training systems for which these
requirements may be excessive. However, for significant training of personnel for
enduring organizations that perform work involving high levels of knowledge and
cognitive skill, this "high road” will surely pay. Regrettably, it has not been
followed sufficiently often. One of the reasons that training software is seen as
extremely expensive is that it often is rigid and narrow, both in its realization as
software and in its effects in promoting learning. It is unlikely that this "low road”
approach will ever be more efficient at what it does than the human-centered
alternative ot quickly cobbling together stand-up lectures and mastery quizzes. |
believe that a much more effective long-term strategy would be for workers to
acquire some of the knowledge they need to work intelligently and adaptively
through apprenticeship experiences simulated by intelligent and adaptive software.
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FIGURE 1. Results of Sherlock I Evaluation by the Air Force
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Footnotes

1. The Sherlock project, from which my ideas come, is the joint work of
Marilyn Bunzo, Gary Eggan, Robert Glaser, Maria Gordin, Linda Greenberg,
Edward Hughes, Sandra Katz, Susanne Lajoie, Alan Lesgold, Tom McGinnis,
Rudianto Prabowo, Rose Rosenfeld, Arlene Weiner, and a number of other
colleagues, past and present, at the Leaming Research and Development Center,
along with Sherrie Gott, Robert Pokorny, Ellen Hall, Dennis Collins and others at
the Air Force Human Resources Laboratory. AFHRL supported the work but does
not necessarily endorse the statements made in this chapter.

2. The situation for the training world is often similar, though the exact current
technology differs. Training directors would love to have highly adaptive intelligent
software that will run on 640K DOS machines with 20 MB disks. However,
because there are more direct economic forces in the business world than in the
education world, training directors will generally buy new equipment if it proven to
be cost-effective.

3. ltis often alleged that schools cannot afford any incremental investments
over teacher salaries. This is demonstrably untrue. What is true is that capital
investments by schools are somewhat unpredictable and generally driven by broad
social forces. However, the initial investment of schools in primitive computers, the
massive broadening of school-provided transportation, the introduction and
technological modifications of school lunch facilities, and the massive investments
in asbestos removal (often uncorrelated with risk) show that schools can make
major investments. What needs to be understood is what it takes to trigger such
an investment.

4. Itis important to note that the "cost" of software is best seen in terms of the
organizational barriers to its use. For example, one product might cost $10,000
while another might cost $1,000 but require a $1,000 modification to available
hardware platforms. If it is easier for a decision maker to get $8,000 more than
to work around organizational restrictions on hardware purchases or modifications,
then to that decision maker, the $10,000 product is more feasible. In absolute
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terms, software will be seen as feasible if the effects it can produce outweigh the
organizational costs, financial and otherwise, of putting it into use.

5. The Air Force uses test stations to diagnose and repair components from
aircraft. For example, when a navigation component malfunctions, it is replaced
with a unit known to be working and then is sent back to a repair shop for
diagnosis and repair. In that shop, a test station is used to facilitate the diagnosis.
The test station is like a giant telephone switchboard, connecting the aircraft
module being tested to both power sources and measurement devices. Automated
test stations use computer programs to carry out a sequence of tests to localize
aircraft module faults, while manual test stations rely on a technician setting
switches in response to a printed protocol in the Technical Orders for the station.
Sherlock is targeted at a manual test station job. The really hard part of the job,
which is what Sherlock coaches, arises when the test station itself is not working
right. Then, diagnosis must proceed without a protocol that has been totally
prespecified, and meters must be attached by hand to various test points on the
station. Test station failures often take eight to twelve hours of diagnosis before
they are found and remediated. Much of this time is spent physically reaching
various test points and waiting for spare parts to arrive from a central depot.
Sherlock compresses test station diagnosis to about a half hour of concentrated
cognitive activity per fault isolation problem.

6. In our own work, about 20-25% of trainees are female. We occasionally
use masculine pronouns in this paper, purely to simplify exposition and not to
suggest that our results are gender specific.

7. The pronoun we is convenient but inaccurate. The Air Force Human
Resources Laboratory carried out the evaluation study with our support. Official
reporting of their results will appear in Nichols et al. (forthcoming). The summary
we provide is not endorsed by the Air Force. While we have attempted to
accurately convey our best understanding of the results, the official Air Force
position on the methods employed and results obtained may deviate from our
interpretation. We did conduct additional evaluations on our own, which are
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reported in Lajoie and Lesgold (1990). Those results are consistent with the
present discussion as well.

8. Since we use fuzzy variables rather than scalars in our current
implementations, the summarizing is not done by standard regression, but
conceptually, regression analysis is a good way to think about this aspect of our
approach.

9. Objects should also know how to coach to maximize transfer, by
emphasizing the generality of general procedures and giving situational specifics
for more specific bits of knowledge, but that is not the direct focus of this chapter.
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1. Introduction

This paper presents an overview and assessment of computer
modeling and visualization technology in science research and
science education. We distinguish two distinctly different kinds
of animated visualizations, product visualization (visualization of
the model output data) and process visualization (visualization of
the model processes per se). In current science modeling work at
the national supercomputer centers, product visualization 1is
extensively used but process visualization is virtually absent.
Our thesis is that both kinds of visualization are valuable for
gaining scientific insight and understanding. Further, we feel
that their integrated use will become essential as models become
more complex.1

Visualization is valuable in education as well as research. To
make computer modeling methods accessible to students, however, we
must provide semantically transparent visual representations of
both model structure and model behavior. To support the conceptual
clarity required for student modeling work we have developed new

computer tools for visualization of model processes. Although
designed for education, these tools provide some capabilities that
are more advanced than those available to researchers. We will

describe two such tools and suggest that the use of such tools
would also have significant benefits for science research.

2. Computer Modeling and Visualization in Science Research

Computers are beginning to transform the way science is done.
Scientists are using computers to model complex processes of
diverse phenomena, ranging in scale from the inner structure of

1 some models are becoming so comprehensive that no scientist is expert on all
aspects (e.g., global warming supermodels integrating diverse interacting
submodels each of which describes phenomena such as the air-ocean interface,




classical paradigms of experiment and theory. A computer model is
both the concrete embodiment of a theory and a new kind of
laboratory for exploration and experiment. Computer modeling can
be an illuminating source of creative insights about the structure
and behavior of complex phenomena that were previously
inaccessible, and it has made possible the solution of problems
previously thought unsolvable. Further, modeling provides a
powerful bridge between theory and experiment, informed by each to
guide the other in a new synergy that extends and enhances
scientific inquiry. It has already made invaluable contributions
to frontier research in astronomy, biology, chemistry, physics and
meteorology. '

These developments have been greatly accelerated by the use of
supercomputers coupled with powerful graphics display processors.
Indeed, in many cases they would not have been possible without
the use of such resources. When the phenomena being modeled have
high-dimensional nonlinear interactions, traditional (numerical or
graphical) presentations of results are not readily informative.
As supercomputers are used with larger and more complex models,
visual presentations become essential for understanding the
results of modeling runs. In current practice at supercomputer
centers the end result of "scientific visualization"™ is to turn
the numbers generated by modeling runs (the model output data)
into pictures, typically in the form of computer movies. These
reveal far more vividly than can numbers, the behavior of the
phenomena being modeled and the effects of model processes and
interactions.?2 Portraying numerical results as three-dimensional
images moving through time with color encoding produces a visually
compelling and highly informative presentation that greatly aids
compreheasion and interpretation of model output data.

There are extensive applications of computer visualization
methods of this kind in current science research (McCormick,
DeFanti, and Brown, 1987; Cromie, 1988; Cassidy, 1990; Haber,
1990). A recent issue of the International Journal of
Supercomputer Applications, (Follin, 1990) for example, includes
articles describing modeling applications in <climatology,
planetary studies, fluid dynamics, automotive engineering, and

2 wThe most exciting potential of the wide-spread availability of
visualization tools is not the entrancing movies produced, but the insight
gained and the mistakes understood by spotting visual anomalies..."
(McCormick et al, 1987).




EIIects OI lncreasea reennouse yases on Giopal Liimate
Evolution of Severe Thunderstorms

Oceanography of the Pacific Ocean

Spectral Classification of Jupiter's Clouds
Visualization of Flow in Computational Fluid Dynamics
Three-dimensional Viscous Flow in Gas Turbines

Flow through Biofluid Devices (Artificial Heart)
Automobile Side Member Collapse

Visual Simulation of a Chemical Reaction

Glass Structures and Transition

Quantum Chemical Molecular Models

The papers include snapshots of the visual outputs of the models.
An accompanying videotape shows the animations of the output data
generated by each of the models. Some, like the animation of a
developing thunderstorm, are vividly realistic and lifelike; some
show real objects that would otherwise be unseeable.

The complex models that are run on supercomputers are usually
developed by researchers on a workstation, prior to high-speed
"production runs" on the supercomputer facility. The key roles of
the supercomputer facilities in current practice are: supporting
the execution of computation- and data-intensive models, and
producing appropriate numerical data for subsequent analysis. The
post-processing of the results of model computations to turn the
numerical outputs into animated graphical presentations - pictures
or movies - is what is meant by "scientific visualization"™. This
phase often involves the use of powerful graphics workstations.

The representation of a scientific model as a computer program
is a complex process involving representations at several levels
of abstraction: 1) the conceptual entities that the scientist
envisages in his or her mental representation (i.e. the objects
and processes being modeled), 2) a mathematical description of the
behavior and interactions of these objects, 3) a computer program
for implementing the mathematics, and 4) the visual representation
of the results obtained from running the model. Typically, in
current scientific practice, the conceptual entities are described
by differential equations, Fortran is used for transforming the
equations into programs, and Wavefront or a similar type of
graphical rendering and presentation system is wused for
transforming the outputs of Fortran programs into scientific
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visualization, correspond more directly to the conceptual entities
in the scientist's mental model than do the intermediate
representations.

3. Computer MNodeling and Visualization in S8cience Education

Under an NSF project supported by the Applications of Advanced
Technologies Program of the Education and Human Resources
Directorate3, we are exploring the educational applications of new
computer modeling tools and paradigms. Our interest is motivated

by several considerations. The arrival of affordable personal
computers with the computational power of present-day
supercomputers is imminent.4 Hardware systems with the

capabilities of today's supercomputers will be arriving in schools
during the next decade. We must start to think now about how they
should be used. We need to develop the appropriate ideas, software
tools, learning activities, and exemplary demonstrations.

The quantitative improvements in performance embodied in these
new machines make possible qualitative changes in the nature of
computing. These changes can be exploited to provide enormous
educational benefits. In particular, real-time interactive models
with richly animated graphics displays, the same kinds of tools
being used with great benefit in science research, can be made
accessible for use by students. The models and the modeling tools
students work with will be a great deal simpler than those used by
scientists, but the fundamental character of the modeling activity

will be the same, as it should be. The current school science
course focuses on teaching about science. Instead, students should
be doing science. The way is open to introduce modeling into

schools as a compelling new paradigm.

Computer modeling is valuable for students for very much the

3 NSF Grant MDR-8954751, "Visual Modeling: A New Experimental Science".

4 The 80860, a million-transistor chip that will be available this year, is
"designed to be a microprocessor version of a Cray supercomputer.” (Byte,
April, 1989). Like the Cray, it has 64-bit data paths and a pipelined
architecture that can perform multiple floating-point operations in parallel
(120 million such operations per second). It has a graphics coprocessor that
produces three-dimensional color shadings. It will sell initially for just
$750, and that price is certain to drop substantially over the next few years.
By the early 1990's it will be possible to design a personal computer with the
povwer of a mainframe of today, using fewer total chips than those in a Mac II.
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phenomena that are not accessible to direct observation, thereby
enhancing their comprehension of underlying mechanisms. It can
provide insight into the inner workings of a process or phenomenon
- not just about what happens, but why it happens. It enables one
to make and test predictions, and to ask and answer questions such
as “What will happen if this parameter is changed?”,“What are the
critical dependencies?”, and "How can one modify or extend the
model so as to produce a specified behavior?" It enables
investigation in situations where experimentation may be
impractical or infeasible, and it enables the modeler to gain more
information about a process than can be obtained otherwise, e.qg.,
by slowing down or speeding up time or by presenting simultaneous
multi-window views of different representations.

Computer modeling can dramatically enliven science education.
It has unique capabilities for providing students compelling
experiences, engaging them in active investigation, and enhancing
their scientific understanding. A curriculum centered on modeling
activities can foster the development of the notions and art of
scientific exploration and inquiry. Modeling microworlds can
incorporate powerful graphic interfaces to enable easy interaction
without the need for a deep understanding of computers. It can
support facilities that demonstrate concepts and that aid students
in solving problems. A computer modeling approach to teaching
science has the potential for motivating the interest of
significantly greater numbers of students, not just the small
fraction who are already turned on to science and mathematics.

Computer modeling is not new. Modeling languages and
applications have been in use in education for some time.> What is
new is the possibility of making complexity more comprehensible
and accessible to students through the use of new kinds of
modeling tools made possible by the more powerful computational
systems that are on the way. Most people have difficulty
understanding the dynamic behavior of systems composed of
interacting subsystems. Modeling tools that do not support
process visualization have proved ineffective in helping students
gain insight into the mechanisms underlying the behavior of
complex systems.

These difficulties would surely be exacerbated by the

5 see, for example, (Roberts and Barkley, 1988; Tinker, 1990).

5




- - -

processes are ubiquitous. They are fundamental in nature, in the
phenomena of physics, chemistry, biology, and psychology at all
levels. They are essential components of complex interactions in
everything that's interesting to us., Real objects in the world
function, dependently and interdependently, "at the same time."
In chemical reactions different processes occur simultaneously,
and success depends critically on timing. Biological models of
growth and change require that different processes occur
continuously and synergetically. Adaptive systems — the brains of

animals, ecological systems, and social organizations - are
intrinsically parallel. We need to make the underlying principles
more transparent and comprehensible. We need visual modeling

paradigms with better visual representations for thinking about
parallel processes and complex systems.

Notwithstanding its great utility our experience is that
visualization of model outputs (product visualization) does not go
far enough in promoting students' understanding of "why things
turned out the way they did". Even when the output of a model run
gives a complete picture of the behavior of the modeled system, an
understanding of how the system operated to give rise to the
results may not be evident. Moreover, the behavior that is
depicted may be partial and incomplete in important aspects, even
when it looks right. This is analogous to a classic situation in
microbiology specimen analysis: what is salient in the microscope
display of a sample visually enhanced by staining may depend
critically upon the particular staining reagent used. Another
reagent may reveal significantly different and informative
features. The microbiologist who fails to take that into account
may make incomplete, and even faulty, inferences about structure
and underlying mechanism.

There is another, more insidious, problem with product
visualization. Visuvalization techniques such as three-dimensional
rendering using shading and color, together with smooth animation,
can produce an illusory world that is visually compelling and can
seem so0 real that it threatens to overwhelm and hide the
simplifications and defects inherent in any computer-based model
of the real world. The results of even quite simplistic models
can take on a superficial credibility, reflective more of the
sophistication and attractiveness of the display technique than of
the model itself. This is especially a concern for education.
Students may well be led astray by faulty visualizations,
particularly when these are coherent and seem beautiful. (This is
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problem in the context of work with supermodels, in applications
integrating several complex models where there are strong
interactions among the constitutent models and where no scientist
is an expert in all the areas modeled.)

We believe that both the model development process and the
analysis and interpretation of model run data can be greatly
enhanced by the introduction of new tools expressly designed to
complement product visualization. We think these kinds of tools
will be useful to professional scientists as well as students.
There is need, first, for a new kind of visual modeling facility,
a "process visualization"™ tool for animated graphic presentation
of the model processes themselves, the submodel structures and
algorithms, as they interact during the run. One might call this
“front-end" visualization. to distinguish it from the "rear-end"
visualization of the model's outputs that is an established part
of current supercomputer practice (i.e., product visualization).
The new tool is intended to provide a visual isomorph of the
student's (or scientist's) conceptualization of the model, so as
to show the objects being modeled and their interactions in as
direct and transparent a way as possible. We describe two kinds
of process visualization tools in the sections following.

4. Function Machines, a Visual Programming Language

One of the process visualization tools we have developed is a
visual programming language called Function Machines. Function
Machines uses two-dimensional iconic representations of programs,
in contrast with the familiar (one-dimensional) textual languages

in almost universal use today. Our primary objective in
developing Function Machines was to make programming easier to use
for mathematical exploration and inquiry. In working with

educational programming languages, even with the most accessible
languages like Logo, students and teachers often have difficulty
understanding control structures and acquiring fluency using
iteration and recursion, which are central for the description of
algorithms. These conceptual barriers to acquiring a non-
superficial level of programming competence have largely been
eliminated in Function Machines.

In Function Machines the central metaphor is that a function
(or procedure or algorithm) is a "machine"™ (displayed as a
rectangular icon with inputs and outputs). A machines's data and
control outputs can be passed as inputs to other machines through
explicitly drawn connecting paths. Any collection of connected
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of arbitrary complexity level can be constructed. As machines are
activated and run, their icons are shown in inverse video, and the
passage of data into and out of machines is shown by animating the
data and control paths. Thus, the operation of a Function
Machines program is visually explicit and very easy to follow. A
brief look at Function Machines follows, to show the visual
representation of algorithmic processes within this paradigm, and
its use in mathematical modeling. The Function Machines language
and Function Machines programming are described more fully in
(Wight et al, 1988)

The left side of Figure 1 shows a machine that computes the
logistic function, f£(t)=ut(l-t). The machine contains two input
"hoppers"™ (one for the parameter, @, and the other for the
argument, t , as the 1labels under the corresponding hoppers

indicate) and one output "spout" that will contain the result of
the calculation. The right side of the figure shows the internal
structure of the Logistic machine. The inside of the Logistic
machine contains three simpler machines:® two multiply machines,
denoted by "«", and a subtraction machine, denoted by w—w, When

numerical values for M and t are supplied to the Logistic

machine's hoppers, it passes them to its internal machines, which
perform their indicated functions to carry out the computation.
Data are moved from hoppers to machines and from one machine to
another along the connecting lines shown (called "pipes™). The
result of the calculation is sent to the Logistic machine's output
spout.

[INSERT FIGURE 1 ABOUT EERE)

As shown in Figure 2, the process of building more complex
machines out of simpler ones can be continued to higher levels of
embedding. The upper left window of the figure shows a composite
machine, the Parallel Logistic, which is composed of composite
machines. It has a single input, i,(whose current value is 3.8)
and it has no outputs. The inside of this machine is shown in the
right window. It is seen to be composed of three composites, two
Logistic machines and a Scatter Plot machine. The two Logistic

6 These are "primitive™ machines provided by the system as building blocks for
constructing more complex machines (programs). There are more than 100 such
primitives including the mathematical and logical functions and the graphics
and input/output constructs typically found in programming languages.
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machine and the other feeds back as the next input value of t
(this is a straightforward visual way of directing the simplest
form of iteration, backput iteration, where each output becomes
the next input). The inside of one of the Logistic machines is
shown in the lower left window of the figure. The Scatter Plot
machine produces an x,y point plot from its two inputs (i.e., a
scatter plot graph). 1Its inner structure is not shown.

[INSERT FIGURE 2 ABOUT HERE]

Figures 3 and 4 show the results obtained from running the
Parallel Logistic program. Initially the output values of the two
Logistic machines (whose initial inputs differed by only 0.000001)
are very close together, so the points generated by their scatter
plot lie on a diagonal as shown in Figure 3. Subsequently,
however, the two Logistic outputs become widely divergent as is
shown in Figure 4. (This illustrates a characteristic behavior of
the phenomenon known as mathematical chaos - the great sensitivity
of nonlinear functions, even simple quadratic functions like the
Logistic, to small differences in initial conditions).

[INSERT FIGURES 3 AND 4 ABOUT HERE]

The logistic program shows the use of Function Machines for
process visualization of mathematical models defined by equations.
Function Machines can also be used for process visualization (and
product visualization) of one class of models defined by object-
oriented simulations. The Function Machines visual programming
language supports a single class of objects, graphic turtles.
Like objects in general, turtles have state variables (including
their location and heading). They also have algorithms (called
"methods" in object-oriented programming jargon) for such actions
as moving forward a specified distance, turning a specified angle,
and drawing their icon to show their current location and heading.

Figure 5 shows the Function Machines program and initial
display for modeling an interactive multi-turtle simulation called
Turtle Tag. The classic turtle tag problem is to describe the
pattern generated by the tracks of four turtles, initially
postitioned at the vertices of a square, who simultaneously move
in a counterclockwise direction toward their nearest neighbors.
The turtle display (in the right window) shows the initial
positions of the turtles. As the program runs, each turtle first
computes the heading of its nearest neighbor. Thus, turtle a
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process continues with further rounds of seeks and moves.

The left window of Figure 5 shows the top-level prbgram.
First, the four turtles are created and given their initial
locations and headings (by the Create Turtles machine). Next, the
four Seek machines compute the new headings for turtles a, b, ¢,
and d, respectively. Then, the four Move machines move the
turtles forward a fixed dis’ »i1ce along the new headings. The
output of each Move machine passes the current position and
heading of its turtle to the appropriate Seek machine to ready it
for its next computation.

[INSERT FIGURE 5 ABOUT HERE]

The right window of Figure 6 shows the inside of one of the
Seek machines, that for turtle b seeking turtle a. The Seek
machine contains two primitive turtle machines, Get XY, which
computes and outputs the x and y location of turtle a, and the
Head Towards machine, which has three inputs: turtle a's x and y
coordinates, and the name of the turtle that is to move to that
location (in this case, turtle b). The other three Seek machines
effect the same actions for turtles c¢,d, and a, respectively.

[INSERT FIGURE 6 ABOUT HERE]

The inner constituents of the Move machine are not shown here.
(It contains two primitive turtle machines, Set Heading, which
sets the heading computed by Seek, and Forward, which moves the
turtle a designated distance toward the computed heading).

Figure 7 shows the Turtle Tag program in operation. As the
left window shows, the four Seek machines are ready to run. Note
that all four have been activated at the same time so they will
run concurrently. The program has been in operation for some
time. The right window shows the tracks that have been generated
by the turtles thus far.

[INSERT FIGURE 7 ABOUT HERE]

Figure 8 shows the program at a later time. The left window
shows the four Move machines being invoked concurrently. The
right window shows the spiral tracks that have been generated by
the turtles. At this point their paths have converged - the four
turtles are virtually colocated.
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Figures 7 and 8 demonstrate the simultaneous presentation of
process and product visualizations. As the program runs one can
see the processes that are currently computing. At the same time
one can also see what effects these processes have on the model's
visual outputs. Moreover, one can study the relation between the
program description and the program output more intensively by
running the program incrementally at one's own pace, one step at a
time. Observing the model processes in animation can give
students very direct insight into the mechanisms underlying the
model outputs. The educational benefits from working with both
kinds of visualizations increase as models become more complex.

5. Cardio: Object-Oriented Simulation Modeling
Turtle Tag is an example of a relatively simple model with
concurrent processes. The processes in Turtle Tag are both

autonomous and synchronous. Many phenomena of interest in science
are a great deal more complex, often involving real-time
concurrent processes with time delays, feedback 1loops, and
asynchronously coupled constituents. To model such phenomena in a
way that adequately captures and expresses these complex behaviors
imposes computationally intensive requirements that tax the
capabilities of most visual programming languages and visual
modeling systems.

An example of a model that addresses all these characteristics
of complex concurrent phenomena is Cardio?, an object-based
modeling system expressly developed to model the processes that
underly the dynamics of the heart's electrical control system,
Cardio provides students an interactive visual simulation
environment for investigating the physiological behavior of the
human heart while gaining insight into the dynamics of oscillatory
processes in general (particularly coupled oscillators, which are

fundamental to the operation of living systems). Cardio generates
process and product visualizations of the heart's pattern-
producing electrical control system. It enables students to

investigate the deterministic heart dynamics produced by the
cardiac electrical system and to study the effects of changes to
specific heart component parameters.

7 The Cardio program was designed and implemented by Eric Neumann of BBN under
NSF Grant MDR-8954751, ®"Visual Modeling: A New Experimental Science". Cardio
is based in part on descriptions of heart dynamics in (Bratko et al, 1989;
Glass and Mackey, 1988; and Winfree, 1987),
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The major product visualization is the animated heart display,
shown in Figure 9. This is a system-driven graphic animation of
the heart model which shows in real time the rhythmic pulsation of
the heart chamber accompanied by the sound of the opening and
closing of the heart valves. Subsequent figures show the animated
heart in other phases of its operation to give a sense of its
dynamics.

[INSERT FIGURE 9 ABOUT HERE]

There are three main types of tissue components in the heart
model: the two pacemakers (the SA node and the AV node) which are
pulse generators with a natural frequency, but they are also
sensitive to external signals which can reset them; the conduction
paths (which have associated time delays); and the he .rt chamber
muscles (the two atria and the two ventricles), which are the
target tissues of the electrical action. All three kinds of
tissues are excitable media. All have refractory periods for
recovery after triggering. These, together with the time delays,
are the sources of the complex nonlinear behavior of the system.
The components are all represented as objects in the model (in the
sense of object-oriented programming constructs). Their operation
is shown schematically in an animated display, the electrical
control schematic, which is the major process visualization of the
model. The electrical control schematic is shown in the left
window of Figure 10, which also shows the animated heart display.

[INSERT FIGURE 10 ABOUT EERE]

The SA pacemaker node is shown at the top of the electrical
control schematic display. It has conduction paths to the two
atria, and to the AV pacemaker node which, in turn, activates the
two ventricles (note that it first goes to an intervening node,
which has a single path to the leftmost ventricle and a dual path
to the rigncmost one). When the model runs, the moving electrical
action potential is shown with animated trigger pulses, as seen in
Figure 11 which shows the pulsing from the AV pacemaker along the
common conduction path leading to the ventricles.

[INSERT FIGURE 11 ABOUT HERE]

The electrical control schematic is also the user's control
panel. The icons shown at the left column of the schematic
display in Figures 10 and 11 represent user-selectable tools for
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setting model parameters, and other model control functions.

The heart system dynamics result from the run-time interactions
of the pacemaker nodes, conduction paths, and heart chamber
muscles. The interactive heart animation and electrical control
schematic displays can be simultaneously viewed with EKGs and
phase plots showing heart dynamics. EKG graphs are constructed
and displayed in real time from the 3-dimensional dipole field
generated by the four chambers. The depolarization wave of the
myocardium creates a positive deflection on the EKG trace as the
wave approaches a lead, a negative deflection as the wave recedes,
and no deflection if the wave moves orthogonally to the lead. The
leads represent the difference between each pair of contact
positions (i.e., right arm, left arm, and feet). Based on the
interpretation of at 1least three different EKG leads,
sophisticated users are able to reconstruct the 3-dimensional
electric vector time-dependent sweep of the heart. Conduction
delays between the atria and ventricles will appear on the
tracings as delays between the deflections. The top right window
of Figure 12 shows a typical EKG plot displayed together with the
electrical control schematic.

[INSERT FIGURE 12 ABOUT HERE)

EKGs are useful in identifying pacemaker characteristics,
conduction rate changes and myocardium anomalies (e.g., ischemia
and infarcts). However, because EKGs are the result of the
combined electric fields of each chamber, it is not easy to
visualize from EKG plots alone, the complex and asynchronous
patterns of chamber depolarization that continuously evolve over
time. Such patterns may arise when the heart does not return to
the same state-space after a single pacemaker cycle (as is the
case for myocardium which is still in the refractory state caused
by the previous pulse). To help visualize such complex behavior,
phase plots of the contractions or electric fields of one chamber
plotted against those of another chamber illustrate the dynamics
by means of orbit paths. A phase plot of the right atrium
contraction vs. left ventricle contraction is shown in the bottom
right window of Figure 12. The plot shows a limit cycle; its
eccentricity depends on the phase difference between the two
chambers.

Complex dysrhythmias can be generated and their effects on
heart dynamics observed in the animated heart display and analyzed
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not always follow the sinus pacemaker, producing multiple orbit
paths like those shown in the phase plot in Figure 13.

[INSERT FIGURE 13 ABOUT HERE]

During a simulation, the student is able to record and plot
various time-dependent dynamic variables, including EKGs and phase
plots of chamber contraction. This is useful in comparing the
dynamics of systems with different parameter values. The user is
able to inspect and modify the parameter settings for each
component of the model. The bottom right window in Figure 14
shows a display (called by the user) of the SA pacemaker node.
The display gives information about the function of the node and
shows the current values of the key parameters associated with it.
The user can modify these values and run the simulation to see the
effect of these changes on the operation of the model.

[INSERT FIGURE 14 ABOUT HERE]

The model includes sets of component parameter values for
several pre-defined heart dysfunctions and dysrhythmias to enable
students to investigate the dynamics of typical heart anomalies
and diseases. Other types of dynamical behaviors can also be
created and studied in Cardio. Mechanical, electrical, and
chemical disturbances of many kinds can be introduced and their
effects on heart behavior observed and analyzed. Cardio-
pharmacological agents such as digitalis and adrenergic compounds
are being implemented so that their physiological effects on
component parameters can be studied. Multiple (i.e., ectopic)
pacemakers can be modeled in several ways (e.g., resetting and
non-resetting). Combined with the intrinsic refractory limit of
the conduction system, these yield complex echo and skip beats.
By saving heart parameters as files, Cardio enables students to
compare, model and test various heart conditions and to determine
the state-space domains of complex and chaotic rhythms. We plan
to incorporate machine-based laboratory (MBL) probes into Cardio
to enable students to measure, and observe in real time, the
performance of their own hearts.

Because the heart model derives its behavior from component
interaction, students can change the parameters of any component
or add their own components to form ectopic pacemakers and
anomolous conduction paths. Further, Cardio's visual modeling
tools enable students to graphically create new components by
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using new instances of pre-compiled objects and inserting them
into the component 1list, circumventing the use of a slower and
less efficient interpretive structure. Thus, students can easily
and quickly create their own heart models and investigate their
behaviors. For example, Figure 15 shows the electrical control
schematic created by a user to investigate the dynamics of a heart
with only a single pacemaker, to try to gain a very specific
understanding of the advantages provided by the more complex
double pacemaker human heart system.

[INSERT FIGURE 15 ABOUT HERE]
6. New Visual Modeling Tools

We have argued that the incorporation of process visualizations
is a highly desirable addition to the technology of computational
modeling, and an essential one both for the introduction of
modeling in science education, and for the support of science
research involving complex models. We have showed examples of two
different kinds of process visualization tools. One kind showed
the kind of visualization enabled by the use of a "universal"
visual programming language capable of representing models with
simple concurrent processes. The other showed the more powerful
kind of visualization enabled by an object-based modeling system
with a user interface expressly designed to facilitate modeling
investigations, and with very specific simulation capabilities for
representing some kinds of models with more complex concurrent
processes.

Another new tool is needed to link the process and product
visualizations by providing a visual facility for interactive
program control of model inputs and outputs during a run.® This
is, in effect, a modeler's control language. Scientists and
students will want to get inside the program while it is running
and feel that what's on the screen is real. They will want to be
able to go in and make changes and see the feedback immediately.
This kind of tool is designed to provide the user with a view of
the objects and object-interactions being modeled, and to invoke
the facilities for producing scientific wvisualizations of the

8 wgcientists not only want to analyze data that results from modeling super-
computations; they also want to interpret what is happening to the data during
their computations. They want to steer calculations in close to real-time;
they want to interact with their data.” (McCormick et al, Op. Cit).
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for input, monitoring, intervention, inspection, and display of
model processes and modules (in both graphic and symbolic forms).

As we noted above, the use of compelling product visualizations
does not guarantee that users will understand the model processes
that give rise to them. Neither, however does the addition of
product visualizations (though these clearly provide a valuable
new dimension of modeling power). The possibility remains,
particularly with beginning students, that modeling investigations
using these visiualization capabilities will be no more insightful
than is often the case with the simpler modeling systems. In many
such "modeling" activities, students vary parameters and generate
tables and graphs, but do not gain any understanding of the
underlying mechanisms relating their output data to the model's
inputs and actions. The existence of attractive facilities for
animating the model processes and outputs does not assure, by
itself, that students (or, indeed, researchers) will gain insights
or understanding. We are convinced that the incorporation of
constructive facilities like those in Cardio, that enable users to
construct their own models, in addition to studying and modifying
given models, are essential for fostering such insight and
understanding. The possibility of assigning tasks such as "build
a model with the following specified behavior" is, in our view, an
essential requirement for investigating complex phenomena by
computational modeling.
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